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Environmental justice beyond race: Skin tone and
exposure to air pollution
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Driven by environmental justice activism and policy reforms, recent social science research,
mostly focused on the United States and Western Europe, shows that marginalized com-
munities face greater environmental degradation. However, the ethnoracial categories used
in these studies may not fully capture environmental inequality in the Global South. This
study presents novel findings that quantify and examine potential mechanisms behind the
link between skin tone and ambient air pollution exposure in Colombia, moving beyond
conventional ethnoracial variables. By matching household geolocations from a large-scale
longitudinal survey with satellite-based pollution estimates, we find that skin tone predicts
both initial pollution levels and their changes over time. Although average pollution levels
remained relatively stable during our study period, the environmental justice landscape in
Colombia underwent a complete transformation. In 2010, lighter-skinned individuals faced
higher particulate pollution exposure, but darker-skinned individuals experienced much
steeper increases in the following years. By 2016, the environmental justice gap had reversed,
with those with the darkest skin tones exposed to nearly one standard deviation higher
pollution levels. Regression analyses reveal that these patterns are robust to the inclusion of a
comprehensive set of theoretically relevant covariates, including ethnoracial self-identification
and income. Decomposition analyses suggest that fire exposure from biomass burning and
other human activities, as well as local collective action, account for a portion of observed
disparities. With climate change expected to intensify fire incidence, the disproportionate
disease burdens that vulnerable groups face might deepen unless policy measures are taken
to reverse this trend.

Environmental justice | Air pollution | Skin tone | Colombia

A ir pollution exposure has strong and enduring negative health and human
capital impacts (1–3). Exposure to particulate matter smaller than 2.5 µm

(PM2.5) is robustly associated with numerous health issues, including respiratory and
cardiovascular disease and premature death (4–6). Pollution exposure negatively
impacts labor productivity, cognitive performance and academic achievement,
ultimately reducing economic well-being (7). For these reasons, the World Health
Organization (WHO) has set guidelines for safe levels of PM2.5, recommending that
the mean annual concentration of PM2.5 stay below 5 µg/m3 (6). In Colombia, the
setting of this study, the economic costs of particulate pollution are estimated to
account for 1.5% of GDP (8). In Latin America and other areas in the world, many
chronic conditions and mortality are often distributed along inequitable societal
lines, with populations of lower socioeconomic status bearing the brunt of the
disease burden (9–11), but little is known about the contribution of environmental
inequalities to such disparities.

Research and activism have brought attention to the disproportionate pollution
exposure suffered by marginalized communities (12–14), with growing concern
for particulate matter. In recent years, social science research has made
significant strides in understanding the drivers and consequences of the unequal
exposure of racialized and economically disadvantaged groups to air pollution, an
inequality sometimes referred to as the environmental justice (EJ) gap (15–17).
Disproportionate exposure PM2.5, has been hypothesized to explain a significant
portion of the racial income gap (18, 19). However, much of this research has
focused on ethnic or racial categories specific to the historical and institutional
context of the United States and thus may not be applicable to most of the world.

In many regions of the Global South, institutionalized racism is deeply entrenched
in urban planning and environmental policies (20–22). Social stratification in these
regions, however, does not necessarily conform to the census-style ethnoracial
categories commonly used in surveys and the environmental inequality literature.
Scholars specializing in the Global South argue that evaluating phenotype, with
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an emphasis on skin tone, might be a more apt metric of
racialized stratification (23–25). Currently, many surveys
in Latin America employ the PERLA (Project on Ethnicity
and Race in Latin America) scale, which categorizes skin
tones into a set of discrete shades, ranging from light to
dark. Nonetheless, skin tone has not yet been explored as a
significant variable in environmental stratification studies.

In this paper, we employ a unique geo-referenced longi-
tudinal household survey and satellite-based air pollution
estimates to produce novel findings quantifying the link
between skin tone, measured by the PERLA scale, and
exposure to ambient air pollution in Colombia. Previous
research in Latin America and elsewhere has focused on
poverty and ethnic categories, making this the first study of
its kind. We document a transformation of the environmental
justice landscape in Colombia. The analysis indicates
that while, on average, particulate matter exposure in our
sample decreased insignificantly between 2010 and 2016 (-0.01
µg/m3), this pattern masks substantial disparities. Skin tone
and ethnoracial self-identification robustly predict different
trajectories of environmental quality, with a larger proportion
of people with darker skin tones exposed to air quality
deterioration. Notably, while people with the darkest skin
started at a lower level of pollution exposure, this group
experienced a 1.6 µg/m3 increase in PM2.5 exposure, an
increase amounting to 8% from the 2010 sample mean. Thus,
by the end of our study period, the association between
skin tone and particulate exposure completely reverts. This
phenomenon is present in both urban and rural settings, but
stronger for the latter. It is consistent for households who
changed residences and those who did not move, ruling out
residential sorting as a major driver. By contrasting the
results obtained when we use a continuous measure of skin
tone and a categorical race variable in ELCA, our study
highlights the limitations of traditional racial categories for
analyses of environmental injustice in the Global South.

Our findings provide descriptive evidence of potential
mechanisms behind these results. In 2010, fire exposure
accounted for just 2% of the variation in pollution exposure
in our sample, as other urban factors were more dominant
predictors of pollution during that time. In that year, regula-
tion was passed establishing air quality guidelines—including
for PM2.5—and mandating monitoring of this pollutant in
a network that, even today, remains concentrated in urban
areas.∗. Over the following decade, pollution abatement
efforts concurred with two relevant processes. First, the
growing influence of climate change on fire activity, which has
been identified as relevant for Colombia (26–28). Second, the
peace process consolidated in 2014 and has since reshaped
the geography of coca cultivation and cattle ranching—both
activities frequently involving deforestation through fire (29).
Consistent with these large-scale phenomena, fire exposure
in 2016 explained nearly 20% of particulate pollution in the
sample, highlighting the increasing influence of rural factors
on overall pollution levels.

Using satellite-based estimations of fire intensity (30, 31)
and wind direction (32), our findings provide suggestive
evidence that fire exposure is a significant contributor to
the EJ gap. We observe a positive gradient between skin
pigmentation and fire pollution exposure in both years.

∗Resolution 610 from 2010

Furthermore, employing standard decomposition techniques
reveals that upwind fire exposure plays a role in both the
composition and returns components of the EJ gap across
both years. The decomposition analysis also highlights that
local collective action, urbanization, and, to a lesser extent,
socioeconomic status, contribute to the gap. Together with
fires and migration, these variables explain two-thirds of the
2016 EJ gap.

Our findings are consistent with other works documenting
that analyses considering ethnoracial categories and skin tone
can play a complementary role to advance our understanding
of the complexities of race and discrimination in Latin
America, with skin tone capturing more significant variance
(33, 34).† Also congruently with other works looking at
nonenvironmental stratification, class is a confounding factor
that holds significance in predicting outcomes, but it does not
fully account for skin tone differences. The findings presented
in this study indicate that further research investigating
environmental justice in Colombia should closely examine
whether the abatement policies and sociopolitical change
has disproportionately benefited certain segments of the
population while neglecting others.

Data and Context

Data Sources. The main analyses in this study utilize
individual-level georeferenced data from the ELCA, a nation-
ally representative longitudinal household survey that tracked
10,000 Colombian households every three years between 2010
and 2016, recording their exact coordinates in each round.
In the 2013 survey round, a PERLA scale module recording
household members’ skin tone was included. We impute
the average skin tone of household adults to nonreported
and unobserved children and group PERLA skin tones into
seven categories. Detailed descriptions of such imputation
are available in SI Appendix Figures S1 and S2.

The panel structure of the survey allows us to examine
migration patterns and the evolution of pollution exposure
levels. Pollution estimates are obtained from the Atmospheric
Composition Analysis Group (ACAG) at Washington Uni-
versity in St. Louis (36). ACAG estimates are produced by
a combination of Aerosol Optical Depth (AOD) retrievals
from various NASA satellite instruments with a chemical
transport model, which is then calibrated using ground-based
observations. This publicly available resource provides raster
data with global coverage at a spatial resolution of 0.01
degrees. We utilize annual estimates of average ground-level
fine particulate matter (PM2.5) for 2010, 2013 and 2016.

Our analysis calculates pollution exposure by averaging
the cells of the PM2.5 raster within 1 km, 5 km, and 10
km buffers around households’ coordinates. The variation
in buffer radius helps ensure the robustness of our results.
This method has been widely used in recent environmental
justice literature (17, 37). An implicit assumption is that the
place of residence is a relevant location to calculate pollution
exposure. While it would be ideal to also capture workplace-
based exposure, ELCA does not contain such information.

†While there are significant variations in skin color among the populations of the Americas, countries
such as Mexico, Brazil, Bolivia, Ecuador, and Peru exhibit patterns in skin tones similar to those
observed in Colombia. Ethnoracial categories are more related to skin color in some countries,
such as Panama, than in others. However, both variables generally capture distinct information
(35).
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Fig. 1. PM2.5 and geographic location of ELCA households

Notes: Variations in Colombia’s PM2.5 (µg/m3) and ELCA households’ location. Panels A and B show annual mean PM2.5
concentrations in 2010 and 2016. Highlighted circles present the location of surveyed urban households in white and surveyed
rural households in gray. Panel C shows the variations in annual mean PM2.5 concentrations between 2010 and 2016.

To assess the role of fire pollution exposure on EJ patterns,
fire exposure at the household level is measured as the
intensity- and probability-weighted yearly upwind fire counts
within a 50 km radius. Fire intensity and probability are
obtained from the Fire Information for Resource Management
System (FIRMS), based on VIIRS-MODIS products (30, 31).
Wind patterns are analyzed using the ERA5 and ERA5-Land
datasets (38). Yearly fire counts are weighted by intensity
and probability, with fire intensity measured in radiance
temperature (K), and only high-confidence fires (over 60%
probability) are included. Fires are classified as upwind
based on prevailing wind direction within 90-degree quadrants,
following previous works (39, 40).

Urban and rural fire exposure is calculated separately to
distinguish between biomass burning in agriculture and forest
fires (rural) and fire activity more likely involving houses
or infrastructure (urban). Urban fires are defined broadly,
including peri-urban and rural areas as long as the fire
occurred within the boundaries of a populated center, defined
as any conglomerate of at least 20 contiguous residences.
Since we are employing a 50 km radius as our boundary for
area of impact of fires, following previous work (39, 40), we
allow for rural households to be impacted by an urban fire
and vice-versa if they are located downwind from the fire and
fall within this perimeter.

Technical details regarding the PERLA scale and ELCA
are available in the SI Appendix, Section Data Sources,
along with a detailed explanation of the ACAG data and fire
exposure assessment. Descriptive statistics are provided in
SI Appendix Tables S1, S2, S3, and S4.

Context. The average individual in the sample experienced
a slight, statistically insignificant decrease in exposure to
PM2.5 between 2010 and 2016. Specifically, urban households
experienced an average increase of -0.1 µg/m3. Meanwhile,
the reduction for rural households was 0.11 µg/m3 (refer to
SI Appendix Table S3).

Figure 1 provides a visual representation of the change in
annual particle concentrations (µg/m3) during this period.

Additionally, the figure displays the geographic distribution
of observations from households participating in ELCA. The
concentration levels 5km around the ELCA households each
year range from 12.4 to 28.5 µg/m3, and the intertemporal
change ranges from -6.8 to 9.3 µg/m3. It is notable that in
2010 and 2016, over 98% of these households were exposed to
annual average concentrations greater than 15 µg/m3, three
times the current WHO guideline (41). SI Appendix Table
S4 classifies ELCA households by their PM2.5 exposure levels
in 2010 and 2016, following WHO guidelines and interim
targets.

Despite government efforts to regulate and enforce air
quality standards, average air quality in Colombia has not
improved over the past decade. The causes of sub-optimal
air quality vary between urban and rural areas, although
biomass burning is a dominant factor nationwide, accounting
for 75% of particulate pollution. Emissions inventories for
the country’s urban centers indicate that particulate matter
primarily arises from fossil fuel combustion, motor vehicle
transportation, and industrial activities. In Colombian
cities, 80% of PM2.5 emissions are attributed to mobile
sources, with the remaining 20% coming from stationary
sources (8). Recent studies (42) have highlighted the
increasing contribution of motorbikes to urban pollution levels.
Additionally, unfavorable topography and meteorological
conditions hinder the proper dispersion of pollutants in the
atmosphere (8). Improper waste disposal practices, especially
uncontrolled waste burning, remain a significant cause of
air pollution, particularly in urban peripheries and rural
areas where settlements lack adequate waste disposal services.
Recent migration and displacement have further exacerbated
this problem (43, 44).

In rural Colombia and neighboring countries, several
factors contribute to high levels of air pollution. Open
biomass burning, including agricultural and forest fires, is
a major source of pollution in South America, making the
region one of the largest global contributors to such emissions
(45, 46). In Colombia, deforestation—often linked to illicit
activities such as coca cultivation and trafficking—aggravates
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the problem, as land clearing for both legal and illegal
crops often involves intentional fires (47, 48). The peace
negotiations and FARC’s ceasefire in 2014 further accelerated
deforestation and altered conservation dynamics (49, 50).
Moreover, extractive industries such as open-pit coal mining
and quarrying have significantly deteriorated air quality
across numerous municipalities (51). Pollution from nearby
urban centers also affects rural populations, compounding
the issue. Climate change intensifies these challenges by
increasing the frequency of forest fires, further raising
particulate matter (PM2.5) concentrations (27, 28).

Methodology

To measure the transformation of environmental inequality
in Colombia, we quantify and decompose the skin-tone
differences in pollution exposure observed in 2010, 2016 and
the inter-temporal change during this period. Without any
additional covariates, these relationships are of academic and
policy interest because they reveal that skin tone is a relevant
axis of environmental stratification in Colombia. In the
environmental justice literature, researchers are interested in
measuring the robustness of the inequitable exposure finding
to the inclusion of statistical controls. In particular, a number
of studies have questioned whether race is still significant
after conditioning on income and proxies for wealth, or
other local characteristics that might drive firms’ production
decisions or governments’ environmental policies, even if some
of these characteristics are themselves a consequence of race
(17, 52, 53).

Quantification of the environmental justice gap. Our econo-
metric specifications estimate an ordinary least squares
regression using as our dependent variable estimated PM2.5
exposure, which may be 2010 levels, 2016 levels, or the change
between 2010 and 2016. Our independent variables of interest
are a series of skin tone indicators. Specifically, we estimate
the following equation:

Yit = α0 +
∑

j∈[3,7]

αjt1[P ERLAi = j] + χit + ϵit [1]

where Yit is the average pollution measurement of in-
terest in a 5-km buffer around the residence of individual
i. These regressions are estimated separately for t =
2010, 2016, 2016 − 2010. 1[P ERLAi = j] represents an
indicator variable for the PERLA skin tone categories as
defined in this study, j ∈ [3, 7]. The omitted category
corresponds to individuals with lighter skin (tones 1 and
2 on the PERLA scale). The coefficients αjt measure the
relationship between PM2.5 exposure at time t.

Theoretically relevant covariates from the EJ literature
are then progressively added to χi. First, to insert our
analyses into the “race versus class” debate (53), we include
monthly household income in t as well as an indicator of
at least one unmet need. Second, as we are interested in
showing that skin tone is a robust measure of environmental
stratification regardless of ethnoracial self-identification, we
include enthoracial indicators. Degree of urbanization in
municipality of residence is also accounted for.

We also include migratory status, indicating if the have
changed municipalities in the past five years. Internal

migration in Colombia is driven by the availability of
work, the need to mitigate the impact of climatic events,
and the influence of the armed conflict. Indigenous and
Afro-descendant populations are overrepresented among the
displaced population (54), and are more likely to be displaced
by the Colombian conflict than to migrate for economic
reasons (55), potentially constraining there relocation choices
with implications for the environmental quality they have
access to. Urban and rural upwind fire pollution exposure
in a 50 km radius is included. Most recent election turnout
is also included as a control, as it has been conceptualized
as a proxy for local collective action and found to be a
predictor of pollution exposure and location of hazardous
waste facilities (56, 57). The SI Appendix describes the
covariate construction in greater detail.

Decomposition of the environmental justice gap. To fur-
ther dissect the observed disparities, we employ the Kita-
gawa–Oaxaca–Blinder decomposition (KOBD) framework
(58–60). This approach involves a series of counterfactual
exercises, such as estimating how the EJ gap would look if
people with darker skin tones had the same composition of
observable characteristics—such as income or fire pollution
exposure—as those with lighter tones, or how pollution
exposure for individuals with darker skin tones would change
if they experienced the same returns to standard predictors of
environmental quality as those with lighter skin tones. This
methodology allows us to quantify the extent to which various
factors contribute to the observed skin tone gap in pollution
exposure. Specifically, it helps identify what portion of the
EJ gap is attributable to differences in the distribution of
observable characteristics across skin tone categories. The
unexplained portion of the EJ gap arises from differences in
returns to both observable and unobservable characteristics
between skin tones. This difference in returns is particularly
significant because, when group membership is linked to
immutable characteristics, it is often interpreted as a measure
potentially associated with discrimination (61). Still, it is
important to acknowledge that some of the variables included
in the explained portion of the decomposition may themselves
be influenced by systemic discrimination.

PERLA skin tones are categorized into light L (PERLAi ≤
2) and dark D (PERLA ≥ 3), where we treat categories 1
and 2 as the base category to align with the structure used
throughout the paper. Letting DD = 1 indicate a darker
skin tone, then under certain assumptions, the overall mean
EJ gap ∆O = E[YD | DD = 1] − E[YL | DD = 0] can be
separated into:

∆̂O = X̄D(β̂D − β̂L) + (X̄D − X̄L)β̂L

= ∆̂S + ∆̂X

[2]

The first term in Eq. 2 is the environmental stratification
component, ∆̂S , which captures differences in coefficients of
included controls, while the second term is the composition
component, ∆̂X , capturing the differences in characteristics
between groups L and D. The decomposition is performed
incorporating in X the covariates employed in Eq. 1.
The required assumptions, simple counterfactual treatment,
overlapping support between groups and ignorability of
unobserved covariates, are discussed in detail in the SI
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Methodological Appendix Section, along with the limitations
they entail.

Under the same assumptions required to estimate Eq. 2,
∆̂S and ∆̂X can be further decomposed and expressed as
the sum of the contributions of the covariates. The detailed
decomposition then allows us to examine the evolution of
the relative relevance of covariates and their returns to the
EJ gap. Each element of the sum ∆̂S can be interpreted as
the contribution of the difference in the returns to the kth
covariate to the total environmental stratification portion,
evaluated at the mean value of X̄Bk. A comprehensive discus-
sion on the estimation techniques, underlying assumptions,
and potential limitations of the overall and detail KOBD
is available in the SI Methodological Appendix Section. In
Section , we discuss the implications of the main assumptions
for this KOBD application and corroborate that our results
are robust to key modeling choices.

Results

Skin tone as consistent axis of environmental stratification.
Previous EJ research typically relies on ethnoracial categories
(16, 53) or foreign-born status (62–64) to assess environmental
inequality. However, skin tone has been identified as “a
central axis of social stratification in at least several Latin
American countries, though it is often ignored” (24, p.3).
The reluctance of survey respondents to self-identify with one
of the available categories in ELCA (“White,” “Black/Afro-
descendant,” “Indigenous,” “Palenquero,” “Raizal”)—where
a striking 30% of respondents select none of these options—
reflects the methodological challenges in conducting envi-
ronmental justice assessments with these categories. Along
the same lines, Figure 2 illustrates the significant overlap
of observed skin tone that exists even among individuals
who self-report as Black and white. Indigenous people, who
are a diverse group in terms of phenotype, also potentially
face different manifestations and levels of institutionalized
colorism. The disconnect between ethnoracial categories as
traditionally defined and the local realities of Latin America
may be behind the lack of findings of statistically significant
links between pollution and ethnoracial identity in previous
research in some of these contexts (e.g., (65–67)).

Before proceeding to the regression analyses, average
pollution exposure is computed for skin tone categories
using different buffer radii. Figure 3 (a) illustrates a linear
gradient in 2010, where individuals in the darkest category
benefited from lower pollution exposure—7.9% less than those
in categories 1 and 2, a difference of 1.52 µg/m3. However,
by 2016, this relationship had reversed. Individuals with
lighter skin tones (≤4 on the PERLA scale) disproportionately
benefited from air quality improvements, while those with
darker skin tones (≥5 on the PERLA scale) were increasingly
exposed to air quality degradation throughout the study
period. Specifically, the darker skin tone group (PERLA≥7)
saw an increase of 1.55 µg/m3 (8.1%) by 2016, while
the lightest skin tone group experienced an almost equal
improvement of -1.21 µg/m3 (-5.9%). As a result, by 2016,
individuals in the darkest skin tone categories had an average
pollution exposure that was 6% higher than those with the
lightest skin tones. These patterns are remarkably robust to
defining exposure with different buffer radii (1 km, 5 km, and
10 km).

0 20 40 60 80 100

Afrodescendant

Indigenous

Mestizo

None

White

Se
lf-

re
po

rte
d 

et
hn

ic
ity

Skin Tone PERLA Scale

Fig. 2. Ethnoracial categories and skin tone in Colombia

Notes: Figure shows the distribution of skin tone using the PERLA
scale within each one of the self-reported ethnoracial categories.

In addition to aggregate estimates, we conducted a
separate analysis by dividing the sample based on the type of
residence (urban or rural) at the time of the first interview and
whether households moved more than five kilometers from
their initial residence during the study period (Panels (b) and
(c)). The direction of the changes is robust to these varying
sample dissections. While the magnitude of the change was
considerably greater among those living in a rural area in
2010, in the next section we show that that the pattern of
worsening air pollution with darker skin tones is statistically
significant and robust for urban respondents as well.

Previous EJ research has debated whether systematic
inequalities in exposure to air pollution are driven by
disproportionate siting of emitting facilities in minority
neighborhoods (or selective implementation of environmental
policies) or from sorting‡. The panel structure of the ELCA
allows us to examine the potential role of sorting and siting as
two relevant mechanisms contributing to the emergence of EJ
gaps in Colombia. Panels (b) and (c) of Figure 3 situate our
findings within the sorting versus siting debate by comparing
movers with non-movers —i.e. those who relocated more than
five kilometers between ELCA rounds from those who did
not. In our sample 9.8% of people moved under this criterion,
while 4.8% changed their municipality of residence between
2010 and 2016. Residential sorting —moving looking for
lower prices or towards specific amenities— can occur within
the same neighborhood and has been found to explain some
environmental inequalities (17, 53).

If sorting were the primary driver of the observed envi-
ronmental fortune reversal, we would expect the aggregate
pattern to dissipate among non-movers. For respondents
who began in urban areas, the observed reversal is primarily
driven by non-movers, as movers in some skin tone categories
relocated to areas with slightly better air quality. This result
is even more pronounced for rural respondents. Regardless
of whether they moved, individuals with the lightest skin
tones experienced a roughly 2 µg/m3 (10%) improvement in
air quality over the study period, the opposite of what we

‡Other policy-relevant drivers are differential access to information and discriminatory housing
markets, which yield a phenomenon known as steering (68, 69).
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Fig. 3. Average PM2.5 exposure by skin tone

Notes: Estimates using 2010 and 2016 ELCA. (b) includes
households residing in urban areas when first interviewed and
(c) households residing in rural areas. Movers are defined as those
who relocated more than five kilometers between ELCA rounds.

observe for the darkest-skinned respondents. Both movers
and non-movers experienced increased particulate pollution
exposure, (6.3% and 11.7%, respectively) resulting in a 2016
gap between the lightest and darkest skin of 21.1% for non-
movers and 15.8% for movers.

Using predetermined racial categories, we observe some
disparities in exposure levels. To elaborate, in 2010, individ-
uals identifying as white had exposure levels of 19.78 µg/m3,

0.44 µg/m3 higher than mestizos, 0.74 higher than indigenous
and more than a unit higher than the pollution exposure of
Afro-descendants (18.69 µg/m3). Over time, both white and
mestizo populations experienced notable improvements in air
quality. On the other hand, the air quality for indigenous and
Afro-descendant individuals worsened, with PM2.5 increments
of 1.02 µg/m3 and 0.54 µg/m3, respectively. This relationship
is even more pronounced in rural samples. Detailed results
are presented in SI Appendix Figure S5 in the appendix.

Figure S6 in the SI Appendix confirms that the 2013
gradient was an intermediate step between 2010 and 2016,
indicating a gradual transformation of the environmental
justice landscape in Colombia during the study period.

The environmental justice gap. The results from estimating
Eq.1 for 2010, 2016, and their difference, as shown in Figure 4,
once again reveal a reversal of the skin tone-pollution gradient
in Colombia. Panel (a) illustrates that in 2010, individuals
with darker skin tones were exposed to lower pollution levels.
However, this difference becomes less pronounced as more
statistical controls are applied, with local election turnout
contributing to the most significant reduction. Specifically,
the association between having a skin tone rating of ≥ 7 (the
darkest category) and pollution exposure in 2010 shifts from
-1.5 in the raw correlations to -0.6 µg/m3 in the specification
with all the controls.

In 2016, the shape of this gradient shifts notably. While
skin tones 3 and 4 are associated with pollution levels
approximately half a unit lower than the lightest skin tone, an
increasing pattern emerges for tones 4-7, as shown in Panel
(b). The estimate for α̂7,2016 is approximately 1 µg/m3 across
all specifications. This pattern holds even after controlling
for a broad set of theoretically relevant covariates. However,
the inclusion of urban and rural fire exposure variables (the
final set of coefficients) reduces the strength of this pattern,
indicating that differential exposure to fire pollution may
play a role in explaining the environmental justice gap in
Colombia.

It is worth examining the intertemporal changes in pollu-
tion, which allows us to fix a series of individual characteristics
and by following them over time, explore how skin tone is
linked to their environmental destinies. The results indicate
a strikingly strong association between skin tone and air
quality deterioration. The group with darkest skin tones
experienced an increase in pollution exposure ranging between
2.1 and 2.8 µg/m3, depending on the covariates adjusting
this relationship, a magnitude corresponding to equivalent
1-1.4 SD of of exposure changes in our dataset. Findings
from comparable contexts suggest that this effect is not only
statistically significant but also economically relevant (70).
For example, recent studies estimate that a 10 µg/m3 increase
in PM2.5 during the first year of life lead to a 9.2% increase in
the infant mortality rate in Sub-Saharan Africa (71), a region
baseline pollution averages 25.2 µg/m3, on par with to the
19.01 µg/m3 average in our sample. Furthermore, estimates
from Chile (26.32 µg/m3) indicate that an increase as small
as 1 µg/m3 in PM2.5 exposure for a single day increases ER
visits for respiratory illness by 0.36% (72).

As skin tone lightens, this coefficient linearly declines,
culminating in an estimate ranging between 0.3 and 0.3
µg/m3 for individuals categorized with a skin tone of 3—
the second-to-lightest shade on our adapted PERLA scale.
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Fig. 4. Average PM2.5 exposure by skin tone

Notes: Associations between skin tone and PM2.5 in 2010 (a), 2016
(b), and the difference in PM2.5 between 2016 and 2010 (c). The
figure includes 99%, 95%, and 90% confidence intervals (fading
color bars). Covariates are progressively added, starting with no
controls (purple) and ending with the most complete specification
(yellow), which includes sociodemographic controls (income, an
unmet needs indicator, urbanization of the county of residence),
migrant status, ethnicity indicators (none, mestizo, indigenous
and afrodescendant), voter turnout, and urban and rural upwind
probability-weighted fire exposure.

Figure 5 indicates that EJ issues are also somewhat
evident along traditional ethnoracial bounds, with indigenous
groups experiencing the best air quality initially but the most
substantial PM2.5 increments subsequently. The omitted
category consists of respondents identifying as white (20% of
the sample). Controlling for fire exposure and local collective
action mutes the 2010 relationships, but not the 2016 or
the intertemporal pattern. Overall, all groups experienced

similar pollution increases compared to white respondents,
with indigenous individuals being the most affected, showing
estimated PM2.5 increases ranging from 1.8 to 2.2 µg/m3.

None
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No controls Sociodemographic +Migration
+Turnout +Fires

(a) 2010
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(b) 2016
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(c) ∆ 2016-2010

Fig. 5. Average PM2.5 exposure by Ethnicity

Notes: Associations between ethnicity and PM2.5 in 2010 (a),
2016 (b), and the difference in PM2.5 between 2016 and 2010
(c). The figure includes 99%, 95%, and 90% confidence intervals
(fading color bars). Covariates are progressively added, starting
with no controls (purple) and ending with the most complete
specification (yellow), which includes sociodemographic controls
(income, an unmet needs indicator, urbanization of the county of
residence), migrant status, voter turnout, and urban and rural
upwind probability-weighted fire exposure.

Figure S6 in the SI Appendix shows that findings from
Figure 4 remain consistent when urban and rural households
are analyzed separately. Among urban respondents, those
with the darkest skin tones experienced an increase in
pollution exposure ranging from 0.7 to 1 µg/m3, equivalent
to 0.35-0.5 SDs of the exposure changes among this sample.

Aguilar-Gomez et al. PNAS — November 22, 2024 — vol. XXX — no. XX — 7



869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

The pattern of increasing exposure with skin pigmentation,
and remains stable even when controls are added. For rural
households, the pattern is more pronounced than in the
general sample, with relative increases for the darkest skin
tones reaching up to 4.3 µg/m3 in the raw specification and
2.7 µg/m3 after including all controls.

Mechanisms. In Colombia, residential firewood use, agri-
cultural burns, and natural sources, such as forest fires,
contribute approximately 75% of PM2.5 emissions, with the
remaining 25% originating from fixed and mobile emission
sources (8). Forest and agricultural fires alone account
for half of the particulate emissions in the country. Our
analyses in the previous sections suggest that exposure to fire
pollution may account for part of the observed disparities.
In this section, we formalize this argument by examining
the evolution of the relationship between skin tone and fire
pollution exposure, and then proceed with decomposition
analyses to further investigate these dynamics.

Figure 6 depicts the relationship between skin tone and
potential fire smoke exposure in Colombia for the years 2010
and 2016. It is important to remind the reader that urban
fires are broadly defined to include peri-urban and rural
areas, as long as the fire took place within the boundaries
of a populated area, which is characterized as any cluster of
at least 20 adjacent or neighboring residences. Under this
definition, the frequency of rural fires in our sample is an
order of magnitude higher than the frequency of urban fires.
In both years, individuals with darker skin tones were exposed
to more upwind rural and urban fires. This pattern remains
constant across time, which indicates that fire pollution is a
persistent determinant of air quality inequities but is less likely
to fully explain the observed changes. Additionally, Figure
S9 in the SI Appendix shows that fire exposure explained 2%
of the variation in PM2.5 in 2010 but accounted for nearly
20% of the variation in particulate pollution in the sample by
2016, underscoring the increasing significance of this factor.
This raises the question of what other components of the EJ
gap have gained or lost explanatory power over time.

The results of the specifications presented in Figure
4 reveal an influence of other included covariates on the
magnitude of the skin color coefficients. Intuitively, a portion
of pollution disparities stems from the correlation of standard
predictors of environmental quality, such as socioeconomic
status and local collective action (quantified through voter
turnout in recent presidential elections), with skin tone.
Figure 7 displays the results of implementing the KOBD
described in Equation 2, showing what fraction of the EJ
disparities can be attributed to differences in the included
covariates. The explained portion represents the amount by
which the EJ gap would be reduced in the hypothetical world
where, other things equal, dark-skinned individuals had the
same observable characteristics as light-skinned individuals,
measured using the included covariates. This decomposition
further illuminates whether specific explanatory variables
disproportionately benefit white individuals, leading to an
unexplained segment of the EJ gap.

Panels (a) and (c) show that a third portion of the racial
difference in pollution exposure remains unaccounted for by
the conventionally relevant variables in the domain. Panels
(b) and (d) present the contributions of specific covariates
to the explained (left) and unexplained (right) portions
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Fig. 6. Skin tone and potential fire smoke exposure in 2010 and 2016 across rural
and urban areas

Notes: Each subfigure shows the estimated exposure to fire smoke
based on skin tone for the years 2010 and 2016, separated by rural
and urban fires. Exposure is calculated as the probability- and
intensity- weighted upwind fire incidence in a 50km radius around
each household’s coordinates. The figure includes 99%, 95%, and
90% confidence intervals (fading color bars). All controls include
income, an unmet needs indicator, ethnicity, urbanization of the
county of residence, migrant status and voter turnout.

of the gap. They offer two additional insights. In terms
of the explained portion, differences in voter turnout and
urbanization had a significant role in 2010, with higher local
collective action levels among darker-skinned individuals
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Fig. 7. Decomposition of EJ gap

Notes: Kitagawa–Oaxaca–Blinder decomposition of the association between skin tone and PM2.5 pollution exposure. Panels (a) and
c) present the overall results of the decomposition, using as cutoff PERLA≤2. Panels (b) and d) present the detailed decomposition.
Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.

having high explanatory power for their relatively lower
pollution exposure. However, by 2016, income differences
between skin tones and urban/peri-urban and rural fire
exposure began to play a detrimental role for darker-skinned
individuals.

On the unexplained side, the environmental stratifica-
tion function—which reflects differential returns to these
covariates—also underwent a marked shift. In 2010, the
unexplained portion suggested that the lower pollution
exposure for darker-skinned individuals was partly due to
favorable returns on factors such as voter turnout and
urbanization. However, by 2016, these returns had reversed,
with lighter-skinned individuals gaining more from local
political participation. Notably, the (negative) returns to
fire exposure increased, exacerbating the EJ. Importantly, a
substantial proportion of the disparity remains unaccounted
for by our study’s included covariates’ composition and
returns.

Robustness. SI Appendix explores heterogeneity in the
results across different modeling choices as well as the results’
sensitivity to a rich set of robustness checks. First of all, all
our main analysis calculate pollution exposure employing
a 5 km radius from the household’s coordinates. The
relationships displayed in Figure 3 prove consistent regardless

of buffer size, as shown in SI Appendix Figures S5 and S6,
where we employ 1km and 10 km radii instead.

Our results remain robust across different imputation
and clustering techniques. SI Appendix Tables S7 and S8
demonstrate that the sign, significance, and magnitude of
our main findings hold under the following specifications: 1)
excluding individuals with imputed skin tones, 2) clustering
standard errors at the household level, and 3) restricting
the sample to only household heads. It is important to note
that the ELCA tracks individuals rather than households,
allowing us to follow household members as they relocate and
form new households by 2016, making the individual-level
regression our preferred specification.

One could relax the assumption that inter-group differ-
ences only come from ∆S and ∆X . A threefold decomposition
allows the gap may vary depending on the interaction between
the characteristics and their respective returns. SI Appendix
Figure S8 shows that in a threefold decomposition, the
interaction effect is relatively small in contrast with ∆S

and ∆X . One could relax the assumption of no general
equilibrium effects implied in standard KOBD techniques.
An option to relax this assumption is proposed by (61). A
pooled decomposition employs as a counterfactual a weighted
average β∗ = ΩβL + (I − Ω)βD where Ω = w reflects a
weighting corresponding to the share of the two groups in the
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population. SI Appendix Figure S8 shows that the results
are virtually identical to figure 7.

A limitation of decomposition analysis, as with any
counterfactual exercise, is that a reference group has to
be chosen by the researcher, and this choice mechanically
impacts the estimates resulting from the decomposition
(61). As a robustness test, we conduct five decompositions
based on different cutoffs between darker and lighter skin
tones. We represent each of these coefficients using a marker
with the color of each skin tone cutoff in Appendix Figure
S9. This figure shows that the qualitative findings of the
general and detailed decompositions do not change drastically
when progressively expanding the reference group to include
additional skin tones beyond 1 and 2. Still, the role of some
covariates can be sensitive to this coding decision, suggesting
caution is warranted when interpreting the detailed KOBD
results.

Discussion

We are the first to show that skin tone is a relevant dimension
of environmental stratification, measured as exposure to
PM2.5. While people with darker skin tones were initially
exposed to better air quality, our findings reveal that
improvements in environmental quality have been unequally
distributed along racial and ethnic lines. Lighter-skinned
individuals disproportionately benefited from reductions in
air pollution over the time period that we examine, while
people with darker skin experienced increases in pollution.
By 2016, we document an environmental fortune reversal,
with people with darker skin tones and non-white ethnoracial
self identification experiencing worse particulate pollution
levels.

We explore the mechanisms driving these patterns. Two
thirds of the observed EJ gaps in both years can be
explained with theoretically relevant covariates, measuring
socioeconomic status, migration status, local collective action,
urban residence, and exposure to pollution from fires. This
last factor presents an increasing gradient with skin tone
pigmentation and is revealed to be an important covariate
in decomposition analyses, especially in 2016. A third of the
gap remains unexplained. In the literature, this phenomenon
is considered consistent, among other things, with potential
systemic discrimination.

Discrimination in this context could manifest, for instance,
through selective cleanup or enforcement of environmental
policies, as seen in other cases of environmental injustice
(69, 73). Government inaction and varying levels of regulatory
stringency have been identified as drivers of environmental
disparities in some settings, with local poverty, collective
action potential, and, in some cases, race emerging as
relevant predictors in the U.S. context (37). In Colombia,
open agricultural fires, forest fires, and waste burning are
prohibited. While controlled cropland burning is legal, it
must adhere to strict requirements regarding the distance
from dwellings, infrastructure, and priority ecosystems.
Moreover, monitoring reports must be submitted to the local
environmental authority for a burn to be considered controlled
(Decree 948 of 1995 and Decree 4296 of 2004). However,
regulators with resource and time constraints must choose

to prioritize regulation and remediation across various sites.
This raises the possibility that uneven enforcement could
lead to inequitable exposure to biomass burning pollution in
Colombia, particularly affecting marginalized communities.
An example could be the case of sugarcane cultivation.
Controlled burning is explicitly forbidden in many parts
of Valle del Cauca and Cauca, two of the main sugarcane-
producing departments, but research has found high emissions
from this sector (74). In these regions Afro-descendants make
up almost one-third of the population, compared to 10%
nationally. Future research should explore whether disparities
exist in enforcement practices in this and other regulations
in Colombia and abroad.

Our study has a number of limitations that future work can
address. First, we lack exogenous variation that would allow
us to confidently establish a causal link between fire exposure

—and in general, the potential mechanisms assessed— and pol-
lution disparities. Second, even after including a wide range
of theoretically relevant controls, a substantial portion of
the environmental justice gap remains unexplained, revealing
data limitations in measuring additional relevant contributing
factors. Third, while the overall robustness of the widely-
used ACAG dataset—derived from a combination of AOD
measurements and a chemical transport model calibrated
with ground-based data—makes it a suitable source for our
analysis, the pollution estimates still carry some degree of
uncertainty. This uncertainty stems, among other factors,
from local variations in aerosol properties and the conversion
of AOD to PM2.5. The high resolution we use in this project
poses additional challenges, as finer-scale PM2.5 gradients
may not be fully captured due to the influence of coarser
resolution data sources, which might introduce measurement
error.

Previous research has underscored the considerable eco-
nomic and educational repercussions of even marginal shifts in
PM2.5 levels. Given these insights, the observed fluctuations
in exposure levels among diverse groups can substantially
influence racial equality of opportunity and economic dispar-
ities in both the immediate future and the long run. The
findings presented in this study indicate that further research
investigating environmental justice in Colombia should closely
examine whether the mitigation policies implemented in the
last decade have, by design or by accident, disproportionately
benefited certain segments of the population while neglecting
others. Moreover, without further intervention, some of the
observed dynamics might be exacerbated by climate change
and current internal conflict dynamics, and thus likely to
increase the disproportionate disease burden on vulnerable
groups unless policy measures are implemented to reverse
this trend.
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Description of data and summary statistics

ELCA. The Encuesta Longitudinal Colombiana (ELCA) tracked approximately 10,000 households at three-year intervals for
six years from 2010 to 2016. The survey incorporates ethnic self-identification questions and interviewer-based skin tone
classification, among many other sociodemographic, economic, and cultural questions. We restrict our sample to ELCA
households interviewed in 2010, 2013, and 2016. Skin tone information was collected in the 2013 round. The baseline included
10,164 households, 5,446 urban and 4,718 rural, of which 9,853 remained in the second follow-up, 5,275 urban and 4,578 rural.
Attrition was concentrated among households of senior citizens over 64 in the baseline with no children (1). Importantly, as
some household members relocated during these six years, which accounts for some of the pollution variability, we use all the
surveys at the individual level.

ELCA data collection followed a probabilistic, stratified, multistage, and cluster sampling design. The urban sample
is nationally representative of the households between socioeconomic strata 1 and 4, which cover 97% of the population,
excluding the top 3% in terms of socioeconomic status.∗. This sample encompasses diverse regions, income levels, and degrees
of urbanization. The rural sample covers four large subregions: Mid-Atlantic (north), Cundi-Boyacense (center), coffee axis
(center-west), and center-east. Noncovered regions with significant rural populations include Amazonas (south), Orinoquia
(east), and Pacífico (west). While their omission from ELCA sampling means our study is not representative of the entire
country, the noncovered rural regions contain only approximately 3% of the Colombian population and hence are unlikely to
change our results.

The 2013 data collection round of ELCA included various ethnoracial categories, including “Indigenous,” “ROM or Romani,”
“Raizal,” “Palenquero,” “Black or Mulatto (Afro-descendant)”, “White,” and “Mestizo.” The Raizal population pertains to
those born in San Andrés and Providencia (Caribbean islands) with distinctive cultural traditions. Palenqueros are individuals
born in the palisade towns established by slaves during colonial times. Following the National Statistical Department, we
group the “Raizal” and “Palenquero” categories along with the “Black and Mulatto” into the “Afro-descendant” group. Table
S1 presents the population distribution.

In 1999, the Romani people were officially recognized as an ethnic group in Colombia. However, due to the very small sample
size—five urban and six rural observations, respectively—their data was excluded. Additionally, the Venezuelan population in
Colombia surged from 40,000 in 2015 to 1.1 million in 2018 (2), but our estimates, based on the 2010 ELCA design, do not
account for this group.

Indigenous Afro-descendant None Mestizo White Total
Rural 1382 (7.45%) 132 (0.71%) 3279 (17.67%) 3026 (16.30%) 1741 (9.38%) 9560 (51.51%)
Urban 296 (1.59%) 590 (3.18%) 2962 (15.96%) 3174 (17.10%) 1977 (10.65%) 8999 (48.49%)
Total 1678 (9.04%) 722 (3.89%) 6241 (33.63%) 6200 (33.41%) 3718 (20.03%) 18559 (100%)

Table S1. Number of observations in urban and rural samples, by ethnic self-identification.

Notes: The table displays the count of individuals for each self-identification category. We do not include the 3,070 individuals
from the rural sample and the 3,505 individuals from the urban sample who did not respond to this question. The percent of
total observations appears in parentheses.

Skin tone assessment and imputation. In the 2013 round, interviewers employed a standardized tone palette to assess respondents’
facial skin tones. This palette, designed by the Project of Ethnicity and Race in Latin America (PERLA), was devised to
complement the ethnic self-identification categories. The tone spectrum has a lightest shade of 1 and a darkest shade of 11.
To assess the skin tone of household members, ELCA enumerators are provided with a physical color palette and record the
number (1-11) that most closely matches the interviewee’s skin tone. The specific instructions given to the interviewers are as
follows:

"At the end of this chapter, the interviewer will answer question 1000, assigning the code that, in their perception, best
represents the interviewee’s skin color. This question must be handled with great discretion so that the interviewee does not
perceive that their skin color is being coded.”

P1000: Use the COLOR PALETTE (card 5) and indicate the number that most closely matches the skin color of the
interviewee’s face. Remember that this question is to be completed by observation and should be handled discreetly by the
interviewer."

There are instances when we impute skin tones for certain individuals. Imputation was performed for individuals coded as
"12", which indicates they were not directly observed by the interviewer, and to those individuals who participated in both the
2010 and the 2016 waves but did not have an answer for question 1000 in 2013. To address this, we calculate an average skin
tone for all observed household members and assign the closest integer value of this average to those lacking direct observations.

For visual insight into this imputation method across urban and rural households, refer to Figures S1 and S2.

∗The socioeconomic strata is a scaled employed for targeting social policy. Every urban household is classified from 1 to 6.
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Fig. S1. Observations per PERLA skin tone scale, urban sample

Fig. S2. Observations per PERLA skin tone scale, rural sample

Notes: The green bars represent the original skin coding, as measured by the surveyor in the 2013 wave of the ELCA. The
white bars represent the imputed values for the children reported as unseen (category 12) and the adults in the urban sample
who were categorized as unseen or who did not take part in the 2013 survey.

We employ a grouping approach to consolidate the PERLA skin tone distribution’s tails to address the potential limitations
arising from limited observations in the extreme categories. Specifically, we combine the first two categories into one category
and the final four into another. All of the individuals in the five of the PERLA skin tone categories grouped (1, 8, 9, 10, and
11) sum up less than 2% of the entire sample. The grouping procedure is illustrated in Figure S3. The number of individuals in
each of the samples by our grouping of PERLA skin tones after imputation is presented in Table S2.
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Fig. S3. Visual overview of grouping of PERLA categories

Notes: The Sankey plot presents on the left the original skin tones according to the PERLA Palette and on the right the
grouping employed in this paper.

Sample
Rural Urban Total

1 and 2 585 723 1308
% 2.34 2.89 5.23

3 2800 3324 6124
% 11.19 13.28 24.47

4 4469 4158 8627
% 17.86 16.61 34.47

5 2961 2553 5514
% 11.83 10.20 22.03

6 1126 1106 2232
% 4.50 4.42 8.92

≥ 7 633 589 1222
% 2.53 2.35 4.88

Total 12574 12453 25027
% 50.24 49.76 100.00

Table S2. Descriptive statistics: Number of observations in ELCA urban and rural samples, by skin tone

Notes: Sample is restricted to ELCA respondents interviewed in 2010 and 2016. PERLA skin tone scale is regrouped into
seven categories.

Pollution. We sourced our pollution variables from a reanalysis of satellite-based estimates by the Atmospheric Composition
Analysis Group (ACAG) at Washington University in St. Louis. These data encompass annual ground-level fine particulate
matter modeled concentrations (PM2.5) spanning from 1998 to 2020 (3). These estimates are achieved by merging aerosol
optical depth (AOD) retrievals from various NASA satellite instruments with the GEOS-Chem chemical transport model, and
subsequently calibrating to global ground-based observations using a geographically weighted regression. ACAG’s ground-level
raster offers a resolution of 0.01× 0.01◦, which equates to approximately 1.1× 1.1km. To help readers visualize this, Figure S4
illustrates two Colombian counties of distinct sizes.

Limitations of P M2.5 estimates. As described above, he ACAC’s hybrid approach employ a GWR and a chemical transport model
to produce PM estimates. The GWR models provide high predictive power, but one limitation is that they do not explicitly
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(a) Itagüí, Antioquia (b) Bucaramanga, Santander

Fig. S4. Pollution levels from raster and county boundaries for (a) Itagüí, one of the smallest counties in Colombia, and (b) Bucaramanga, a medium-sized county. County
boundaries are obtained from the Dirección Nacional de Planeación (DNP).

rely on scientific relationships, which reduces their interpretability (4). Moreover, local variations in aerosol optical properties
and vertical profiles of aerosols complicate estimation, as the conversion factor between AOD and PM2.5 can vary temporally
and spatially, introducing potential errors in PM2.5 estimations (5).

In contrast, process-driven methods, such as the GEOS-Chem chemical transport model, simulate the physical and chemical
processes that govern the AOD-PM2.5 relationship (4). These models provide estimates that are largely independent of some
error sources, such as surface reflectivity, which can affect satellite retrievals (5). However, their accuracy depends on the
quality of input parameters like emissions data and meteorological conditions, which determine the conditions of the simulation
and influence the results (5). While process-driven models offer a scientifically grounded approach to estimating PM2.5, they
are susceptible to inaccuracies when the input data are imprecise. By combining the two components described and then
calibrating with ground-based measurement, ACAG mitigates the drawbacks of each of them, generating a robust and widely
used data product, but it is still susceptible to some classical measurement error, which can produce downward bias in our
estimates (6).

ACAG data products that are provided at the finest resolution may, in some regions, not fully resolve PM2.5 gradients at the
highest resolution due to influence by information sources at coarser resolution (3), which represents an important limitation to
our analyses. To be clear, classical measurement error in which the measured exposure is expected to have more variation than
the truth, tends to bias the effect estimate toward the null; whereas under Berkson error, in contrast, occurs as a result of
using aggregated instead of individual exposure data, as the case with the coarser resolution of some information sources used
in the ACAG 0.01× 0.01◦ data product. In this case, the measurement is less variable than the truth, which results in an
unbiased effect estimate but greater variance, provided that the true relationship between exposure and outcome is linear.
Systematic error may also occur owing to the spatial correlation between neighboring areas. In the presence of confounders,
the direction of bias becomes unclear in principle and depends on the correlation of exposure with the confounders (7).

Fire exposure. Fire counts are obtained from the Fire Information for Resource Management System (FIRMS), which provides
near real-time active fire locations to natural resource managers based on VIIRS-MODIS products (8, 9). Data from the ERA5
and ERA5-Land Year Aggregated datasets are used for the analysis of wind patterns. ERA5 provides the u and v components
of wind, representing east-west and north-south velocities, respectively. According to ERA5 documentation, these data are
calculated using the mode of hourly air temperature observations at 2 meters. This methodology is used because it has been
found that air temperature at this height accurately and reliably reflects annual wind conditions, providing a dependable
representation of average wind conditions throughout the year (10). Using the u and v components, both wind speed and
direction are calculated as per ECMWF guidelines (11).

To calculate fire exposure at the household level, we determine the intensity- and probability-weighted yearly upwind fire
counts within a 50 km radius of the household’s coordinates. First, following (12), we sum the yearly number of 1 km grid cells
containing a fire within this radius, multiplied by the intensity of each fire. Intensity is measured in brightness temperature
or radiance temperature (K), which is a standard measure of the intensity of electromagnetic energy coming from a source.
All fires are assigned a confidence or likelihood index ranging from 0% to 100%. Following standard practice, we retain only
high-confidence fires with a probability of 60% or higher (13). To classify fires as upwind, we use the method from (14), which
identifies the prevailing wind direction within 90-degree quadrants, starting from 0 degrees North. We then divide the 50 km
radius around each household into 90-degree sectors corresponding to these wind quadrants. By matching these sector buffers
with the yearly fire intensity- data, we estimate the yearly upwind fire exposure at the household level.

To differentiate between urban and rural fires, the populated centers layer was used, which identifies all concentrations of at
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least twenty contiguous, neighboring, or adjoining houses as identified by the National Administrative Department of Statistics
(DANE) (15). The objective is to separate agricultural or forest-related fires, which will be defined as rural fires, from those
involving houses or infrastructure, which have different causes.

Covariate construction. All rounds of ELCA include a question collecting information the household monthly income in a
hundred thousand Colombian pesos. It includes the sum of all the household monthly salary income, retirement income, rent
income, interest income, family or government transfers, and other sources. In 2010, we imputed income information for 1630
individuals, and in 2016, we imputed income information for 542 individuals. The imputation process involved the use of an
OLS model that included the age, educational attainment, sex, and region of individuals over 16 years old. Any negative
estimations were excluded.

The marginalization index (MI), also referred to as the basic unmet needs index, quantifies the presence of at least one
unmet need and is calculated from the following components: 1) housing needs, which considers the maximum value between
inadequate walls and flooring; 2) household critical overcrowding, calculated as the presence of more than three individuals per
bedroom; 3) household utilities access, determined by the maximum between inadequate sewer waste elimination and access to
improved drinking water; 4) economic dependency, calculated for households with more than three individuals per occupied
worker; and 5) schooling, measured as the number of children aged 6 to 12 who are not attending school.

In the regression analysis presented in figures 4-7, S7-S9, and tables S5, S6, and S8, migration refers to the people who
reported living in a different municipality in 2016 than that reported in 2010. In Figures 3B and 3C, as well as Figure S5,
we compare movers with non-movers, defined as people who moved more than 5 km from their original place of residency,
independently of whether they still reside in the same municipality.

Urbanization measures the percentage of each municipality’s urban population in 2010. We assigned this value to each
household by the municipality in which they were located in 2010 and 2016. We use the CEDE electoral dataset to calculate
the closest presidential municipality’s election turnout. The database contains the results of every election for the congress and
the executive branch at the country, departmental, and municipal levels from 1958 up to the present. The values employed in
our regression analyses correspond to the 2010 election turnout of the municipality in which the household was located in 2010
and the 2014 election turnout of the municipality in which they were located in 2016.

Additional descriptive statistics and context. Table S3 presents our dependent variable, average annual PM2.5 calculated for
different radii around the ELCA households for 2010 and 2016, and the differences between both years for the rural, urban,
and full samples. The World Health Organization’s (WHO’s) air quality guidelines specify that annual average concentrations
of PM2.5 should not exceed 5 µg/m3 (16). This guideline is articulated as the air quality guideline (AQG) category in Table S4.
To facilitate incremental progress towards cleaner air, especially in areas with heightened air pollution levels, interim targets
have been proposed. Specifically, the WHO has set the following interim targets for annual exposure: 35 µg/m3 (IT1), 25
µg/m3 (IT2), 15 µg/m3 (IT3), and 10 µg/m3 (IT4). Our investigation using the ELCA data revealed that the yearly exposure
to PM2.5 within a 5 km radius surrounding most households falls within the IT2 range at any given year.

2010 2016 Diff 2016 - 2010
Rural Urban Full Rural Urban Full Rural Urban Full

P M2.510km 19.75 18.92 19.37 19.68 19.01 19.37 -0.07 0.09 0.00
1.60 2.67 2.20 2.50 3.20 2.87 2.30 1.63 2.02

P M2.55km 19.77 18.94 19.39 19.67 19.06 19.39 -0.11 0.10 -0.01
1.70 2.80 2.31 2.53 3.30 2.93 2.36 1.66 2.07

P M2.51km 19.80 18.94 19.40 19.67 19.06 19.39 -0.13 0.12 -0.01
1.76 2.86 2.37 2.55 3.37 2.97 2.40 1.71 2.11

N 23410 23410 23410 23408 23408 23408 23408 23408 23408

Table S3. PM2.5 in 2010, 2016 and difference with different-size buffers around households

Notes: Sample corresponds to ELCA respondents interviewed in 2010 and 2016. Pollution exposure corresponds to exposure
within the specified radii around the coordinates of the household. Urban and rural categories are assigned based on the place
of residence when the respondent was first interviewed in 2010. Standard deviation in parentheses.
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Exposure Range ELCA Households

(µg/m³) 2010 2016
Rural Urban Total Rural Urban Total

Interim Target 1 25–35 0 272 272 1 494 495

Interim Target 2 15–25 12630 11887 24517 12604 11177 23781

Interim Target 3 10–15 0 345 345 25 833 858

Interim Target 4 5–10 0 0 0 0 0 0

Air Quality Guideline <5 0 0 0 0 0 0
N 12630 12504 25134 12630 12504 25134

Table S4. Air quality guidelines for PM2.5 and interim targets

Notes: The table shows the number of individuals in the range of each interim target of the WHO guidelines for PM2.5.
Exposure is calculated from the household’s exact coordinates. No households had an annual exposure higher than 35 µg/m3.

Methodological Appendix

Kitagawa–Oaxaca–Blinder decomposition: Assumptions and limitations. While in practice, the KOBD is a simple and widely
used counterfactual analysis, it relies on a number of assumptions that can have implications for interpretation. Fortin et
al (2011) (17) offer a meticulous description of these assumptions. We rely on their notation and structure to discuss the
implications of such assumptions for our analyses.

First of all, the environmental stratification function estimated for each group is assumed to be linear and additively
separable in observable (Xi) and unobservable (εi) characteristics:

Yig = Xiβg + vig, for g = L,D

where vg is a function of unobservable characteristics vig = hgεi with zero conditional mean.
To be able to write the overall gap ∆O as the sum of ∆S and ∆X , three additional assumptions are required. The first

assumption is that the environmental stratification function mL(X, ε) can serve as a counterfactual for individuals in group
D and mD(X, ε) as a counterfactual for individuals in group L. This assumption implies that there would be no general
equilibrium effects if dark-skinned people had access to the environmental returns experienced by light-skinned people, and
vice versa. The validity of this assumption hinges on whether changes in pollution exposure stem from overall improvements or
deteriorations in pollution levels, or from the displacement of pollution sources from one group’s predominant region to the
other’s. An option to relax this assumption proposed by (17) is implemented in the robustness section. A pooled decomposition
employs as a counterfactual a weighted average β∗ = ΩβL + (I − Ω)βD, where Ω = w reflects a weighting corresponding to the
share of the two groups in the population.

The second assumption, overlapping support, rules out cases where different predictors might exist for environmental quality
between groups D and L. The third assumption, ignorability, implies that manipulations of the distribution of observables X
are not confounded by changes in the distribution of the error term. This assumption requires that the conditional distribution
of unobservables given X is the same across groups L and D. In essence, the "selection based on observables" assumption
permits selection biases as long as they are consistent between the two groups. In our context, ignorability implies that
individuals with the same observable characteristics select into environmental quality similarly, regardless of skin tone. This
assumption also implies a similar willingness to pay function between individuals from groups D and L with similar observables.
However, this assumption represents a limitation of the analysis, as it may not hold true in reality, and the direction of the bias
is unclear. For a more detailed discussion on recent findings linking willingness to pay with EJ outcomes, see (18). While we
do not directly address the magnitude of selection based on unobservables in our decomposition results, we employ bounding
exercises as robustness tests to our main results.

Under the assumptions above:

∆O = E[YD | DD = 1]− E[YL | DD = 0]
= (E[X|DD = 1]βD + E[vD|DD = 1])−
(E[X|DD = 0]βL + E[vL|DD = 0])

[1]

Where where vg is a function of unobservable characteristics with zero conditional mean. Replacing the expected value of
the covariates E[X | DD = d], for d = 0, 1, by the sample averages X̄g, and adding and subtracting the average contrafactual
exposure X̄Dβ̂L, the decomposition can be expressed and estimated as:
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∆̂O = X̄Dβ̂D − X̄Dβ̂L + X̄Dβ̂L − X̄Lβ̂L

= X̄D(β̂D − β̂L) + (X̄D − X̄L)β̂L

= ∆̂S + ∆̂X

[2]

Under the same set of assumptions, the decomposition can be further disaggregated into a detailed decomposition that
quantifies the contribution of each covariate to ∆S and ∆X . Specifically;

∆̂S = (β̂D0 − β̂L0) +
M∑

k=1

X̄Dk(β̂Dk − β̂Lk), [3]

∆̂X =
M∑

k=1

(X̄Dk − X̄Lk)β̂Lk, [4]

where (β̂D0− β̂L0) represents the omitted group differences, and where X̄gk and β̂gk represent the kth element of X̄g and β̂g,
respectively.

(
X̄Dk − X̄Ak

)
β̂Lk and X̄Dk(β̂Dk − β̂Lk) are the respective contributions of the kth covariate to the composition

and stratification effects.
While transitioning from a general to a detailed decomposition is computationally straightforward, some of the coding

decisions made during the general decomposition carry greater implications for the detailed decomposition. The omitted group
problem is perhaps the most significant concern. Various elements in ∆S are influenced by the choice of the omitted group, as
the interpretation of covariate coefficients hinges on the counterfactual difference in Y when each covariate k is shifted from its
value in the omitted group to its average value X̄Dk. The most important implication of this limitation is that the categorical
variables must be coded such that the omitted group has economic meaning. In this particular case, since our categorical
variables are ethnicity (included categories are mestizo, indigenous and afro-descendant), unmet needs (=1 if ≥ 1 unmet need)
and migration status (=1 if the person migrated in the past five years), our omitted group comprises white non-migrants with
no unmet needs. This choice is reasonable, as it aligns with the common practice in the literature of using a less marginalized
population as the reference group.
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Robustness tests and additional results

Additional results.

Self-reported ethnoracial categories and pollution exposure. Figure S5 shows descriptive results comparable to Figure 3, but corre-
lating pollution exposure with ethnicity instead of skin tone. The findings reveal that most non-white respondents experienced
air quality deterioration.

(a) Full sample

(b) Urban sample, by migration status (c) Rural sample, by migration status

Fig. S5. Average PM2.5 exposure by skin tone and self-reported ethnicity

Notes: Estimates from 2010 and 2016 ELCA. (b) includes households residing in urban areas and (c) households residing in
rural areas when first interviewed. Annual mean PM2.5 exposure is calculated by spatially averaging pollution values in a
buffer of 1 km, 5 km, or 10 km around each household.
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Including 2013 in the analysis. Figure S6 presents the same results as in Figure 3 but includes the buffers around the households
in 2013. The graphs show that the improvement in pollution exposure for lighter skin colors was gradual for both the rural and
urban populations but was more significant in the rural sample.

(a) Full sample (b) Urban

(c) Rural

Fig. S6. Average PM2.5 exposure by skin tone

Notes: Estimates using 2010 and 2016 ELCA. (b) includes households residing in urban areas when first interviewed and (c)
households residing in rural areas. We calculate annual mean PM2.5 exposure by spatially averaging pollution values in a buffer
of 1 km, 5 km, and 10 km around each household.
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Skin tone and pollution exposure, urban and rural households. Figure S7 shows the same results as Figure 4, but splitting the sample
between urban and rural households (based on their 2010 place of residence).

(a) Rural

(b) Urbanl

Fig. S7. ∆ 2010-2016 PM2.5 by skin tone and urban/rural status

Notes: Associations between skin tone and the difference in PM2.5 between 2016 and 2010. The figure includes 99%, 95%, and
90% confidence intervals (fading color bars). Covariates are progressively added, starting with no controls (purple) and ending
with the most complete specification (yellow), which includes sociodemographic controls (income, an unmet needs indicator,
urbanization of the county of residence), migrant status, ethnicity indicators (none, mestizo, indigenous and afrodescendant),
voter turnout, and urban and rural upwind probability-weighted fire exposure.
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Robustness to variations in buffer radius. This section demonstrates the robustness of the results when we vary the size of the
buffer used to calculate exposure. Three dependent variables are utilized. The first dependent variable measures the average
particulate matter (PM2.5) in different-sized buffers around each household location in 2010. The second dependent variable
measures the average particulate matter (PM2.5) in different-sized buffers around each household location in 2016. The third
dependent variable captures the difference between PM2.5 in 2016 and PM2.5 in 2010 within the respective buffer. The variables
of interest in this section are the different PERLA skin tone categories, with the omitted category being the lightest shade
(Perla skin tones 1 and 2). The analysis incorporates controls employed in our main specification.

10 km buffer. Table S5 presents the association between skin tone and pollution exposure, using a 10 km buffer around households’
coordinates to generate the spatial average of pollution concentration.

(1) (2) (3) (4) (5) (6)
P M2.5 P M2.5 P M2.5 P M2.5 Diff P M2.5 Diff P M2.5

2010 2010 2016 2016 2016-2010 2016-2010

PERLA 3 -0.895*** -0.540*** -0.362*** -0.514*** 0.532*** 0.156***
(0.0710) (0.0586) (0.0923) (0.0813) (0.0622) (0.0522)

PERLA 4 -1.246*** -0.773*** -0.330*** -0.517*** 0.914*** 0.485***
(0.0690) (0.0574) (0.0897) (0.0797) (0.0605) (0.0511)

PERLA 5 -1.316*** -0.717*** 0.274*** -0.266*** 1.588*** 0.890***
(0.0712) (0.0598) (0.0926) (0.0830) (0.0624) (0.0531)

PERLA 6 -1.534*** -0.761*** 0.750*** 0.123 2.281*** 1.447***
(0.0799) (0.0676) (0.104) (0.0940) (0.0700) (0.0598)

PERLA ≥ 7 -1.391*** -0.627*** 1.292*** 0.914*** 2.681*** 1.882***
(0.0902) (0.0776) (0.117) (0.108) (0.0790) (0.0684)

Observations 23,304 23,304 23,305 23,305 23,302 23,302
R-squared 0.022 0.343 0.027 0.253 0.112 0.381
Controls X X X

Table S5. Skin tone and PM2.5 exposure, ELCA - 10 km buffers

Notes: OLS estimation of the relationship between PERLA skin tone and PM2.5 in 2010 (Columns 1 and 2), in 2016 (Columns
3 and 4) and the difference in the PM2.5 from 2010 to 2016 (Columns 5 and 6). Exposure is calculated using a 10-km
buffer around the individual’s household coordinates. Controls include sociodemographic (income, an unmet needs indicator,
urbanization of the county of residence), migrant status, ethnicity indicators (none, mestizo, indigenous and afrodescendant),
voter turnout, and urban and rural upwind probability-weighted fire exposure. Standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
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1 km buffer. Table S6 presents the association between skin tone and pollution exposure, using a 1 km buffer around households’
coordinates to generate the spatial average of pollution concentration.

(1) (2) (3) (4) (5) (6)
P M2.5 P M2.5 P M2.5 P M2.5 Diff P M2.5 Diff P M2.5

2010 2010 2016 2016 2016-2010 2016-2010

PERLA 3 -0.988*** -0.609*** -0.391*** -0.543*** 0.595*** 0.208***
(0.0765) (0.0635) (0.0957) (0.0850) (0.0650) (0.0549)

PERLA 4 -1.365*** -0.862*** -0.373*** -0.551*** 0.990*** 0.554***
(0.0744) (0.0622) (0.0931) (0.0832) (0.0632) (0.0536)

PERLA 5 -1.498*** -0.859*** 0.215** -0.308*** 1.710*** 1.003***
(0.0768) (0.0648) (0.0960) (0.0867) (0.0652) (0.0558)

PERLA 6 -1.731*** -0.903*** 0.694*** 0.0947 2.423*** 1.574***
(0.0861) (0.0732) (0.108) (0.0982) (0.0731) (0.0629)

PERLA ≥ 7 -1.564*** -0.733*** 1.251*** 0.913*** 2.814*** 1.989***
(0.0973) (0.0841) (0.122) (0.112) (0.0826) (0.0718)

Observations 23,304 23,304 23,305 23,305 23,302 23,302
R-squared 0.024 0.338 0.025 0.240 0.112 0.375
Controls X X X

Table S6. Skin tone and PM2.5 exposure, ELCA - 1 km buffers

Notes: OLS estimation of the relationship between PERLA skin tone and PM2.5 in 2010 (Columns 1 and 2), in 2016 (Columns 3
and 4) and the difference in the PM2.5 from 2010 to 2016 (Columns 5 and 6). Exposure is calculated using a 1-km buffer around
the individual’s household coordinates. Controls include sociodemographic (income, an unmet needs indicator, urbanization of
the county of residence), migrant status, ethnicity indicators (none, mestizo, indigenous and afrodescendant), voter turnout,
and urban and rural upwind probability-weighted fire exposure. Standard errors in parentheses.*** p<0.01, ** p<0.05, *
p<0.1.
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Additional robustness tests.

Varying imputation and clustering techniques. Tables S7 and S8 demonstrate our main findings hold under the following specifications:
1) excluding individuals with imputed skin tones (Columns 1-3), 2) clustering standard errors at the household level (Columns
4-6), and 3) restricting the sample to only household heads (Columns 7-9). It is important to note that the ELCA tracks
individuals rather than households, allowing us to follow household members as they relocate and form new households by
2016, making the individual-level regression our preferred specification.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
P M2.5 P M2.5 Diff P M2.5 P M2.5 P M2.5 Diff P M2.5 P M2.5 P M2.5 Diff P M2.5

2010 2016 2016-2010 2010 2016 2016-2010 2010 2016 2016-2010
No Imputation No Imputation No Imputation Household Cluster Household Cluster Household Cluster Household Head Household Head Household Head

PERLA 3 -0.952*** -0.324*** 0.625*** -0.976*** -0.358*** 0.615*** -1.004*** -0.372** 0.633***
(0.0848) (0.106) (0.0730) (0.0209) (0.0594) (0.0446) (0.139) (0.172) (0.115)

PERLA 4 -1.296*** -0.305*** 0.988*** -1.345*** -0.339*** 1.003*** -1.269*** -0.396** 0.873***
(0.0827) (0.104) (0.0712) (0.0414) (0.0953) (0.0601) (0.135) (0.167) (0.111)

PERLA 5 -1.410*** 0.228** 1.635*** -1.466*** 0.195** 1.658*** -1.390*** 0.121 1.511***
(0.0855) (0.107) (0.0736) (0.0391) (0.0873) (0.0521) (0.139) (0.172) (0.115)

PERLA 6 -1.547*** 0.853*** 2.398*** -1.608*** 0.802*** 2.408*** -1.555*** 0.732*** 2.287***
(0.0962) (0.121) (0.0828) (0.0682) (0.152) (0.0906) (0.154) (0.192) (0.128)

PERLA ≥ 7 -1.214*** 1.878*** 3.090*** -1.492*** 1.302*** 2.792*** -1.492*** 1.290*** 2.782***
(0.160) (0.200) (0.137) (0.0469) (0.0856) (0.0421) (0.174) (0.215) (0.144)

Observations 15,976 15,977 15,974 17,280 17,281 17,278 6,642 6,642 6,642
R-squared 0.022 0.024 0.098 0.025 0.027 0.112 0.020 0.027 0.112
Controls

Table S7. Skin tone and PM2.5 exposure, additional robustness tests, no controls

Notes: OLS estimation of the relationship between PERLA skin tone and PM2.5 without imputating skin colors (Columns 1
to 3), cluster standard errors to the household level (Columns 4 to 6) and only using the information of the household head
(Columns 5 and 6). Standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
P M2.5 P M2.5 Diff P M2.5 P M2.5 P M2.5 Diff P M2.5 P M2.5 P M2.5 Diff P M2.5

2010 2016 2016-2010 2010 2016 2016-2010 2010 2016 2016-2010
No Imputation No Imputation No Imputation Household Cluster Household Cluster Household Cluster Household Head Household Head Household Head

PERLA 3 -0.551*** -0.509*** 0.205*** -0.567*** -0.538*** 0.190*** -0.584*** -0.518*** 0.200**
(0.0701) (0.0933) (0.0605) (0.0348) (0.0640) (0.0280) (0.115) (0.153) (0.0968)

PERLA 4 -0.768*** -0.521*** 0.513*** -0.801*** -0.557*** 0.509*** -0.831*** -0.603*** 0.461***
(0.0689) (0.0916) (0.0593) (0.0405) (0.0946) (0.0412) (0.112) (0.150) (0.0945)

PERLA 5 -0.745*** -0.319*** 0.886*** -0.789*** -0.340*** 0.899*** -0.814*** -0.342** 0.883***
(0.0721) (0.0958) (0.0619) (0.0454) (0.0988) (0.0373) (0.116) (0.155) (0.0979)

PERLA 6 -0.732*** 0.102 1.469*** -0.770*** 0.0939 1.481*** -0.770*** 0.118 1.480***
(0.0819) (0.109) (0.0703) (0.0566) (0.117) (0.0632) (0.131) (0.175) (0.110)

PERLA ≥ 7 -0.348** 1.719*** 2.245*** -0.612*** 0.933*** 1.915*** -0.599*** 0.970*** 2.001***
(0.137) (0.182) (0.118) (0.0653) (0.0793) (0.0340) (0.151) (0.202) (0.126)

Observations 15,976 15,977 15,974 17,280 17,281 17,278 6,642 6,642 6,642
R-squared 0.342 0.261 0.388 0.345 0.260 0.389 0.343 0.243 0.379
Controls X X X X X X X X X

Table S8. Skin tone and PM2.5 exposure, additional robustness tests, with controls

Notes: OLS estimation of the relationship between PERLA skin tone and PM2.5 without imputating skin colors (Columns 1
to 3), cluster standard errors to the household level (Columns 4 to 6) and only using the information of the household head
(Columns 5 and 6). Controls include sociodemographic (income, an unmet needs indicator, urbanization of the county of
residence), migrant status, ethnicity indicators (none, mestizo, indigenous and afrodescendant), voter turnout, and urban and
rural upwind probability-weighted fire exposure. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Decomposition analysis.

Pooled and threefold decompositions Figure S8 shows the pooled and threefold versions of our main KOBD results displayed
in Figure 7. The pooled KOBD entails comparing each group against a pooled reference category, in this case the full
sample averages. The threefold KODB splits the overall difference into three components: endowment effects (differences
in covariates), coefficient effects (differences in the relationship between covariates and outcomes), and interaction effects.
This introduces additional flexibility by separately identifying how differences in characteristics and the returns to those
characteristics contribute to disparities, while the the standard twofold decomposition that focuses only on endowments and
coefficients(17).

Pooled Threefold

(a) 2010 (b) 2010

(c) 2016 (d) 2016

(e) Change (f) Change

Fig. S8. Explained and unexplained part of the PM2.5 skin color gap, Pooled and Threefold KOB Decompositions
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Multiple KOBD cutoffs Figure S9 shows the results of conducting KOBDs using different cutoffs to define groups L and D. In
particular, one for each cutoff at tone j ∈ [3, 7].

Explained Unexplained

(a) 2010 (b) 2010

(c) 2016 (d) 2016

(e) Change (f) Change

Fig. S9. Explained and unexplained part of the PM2.5 skin color gap, KOB Decompositions, by various skin color cutoffs
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Fire exposure and household-level pollution Note: Urban fires are defined broadly, including peri-urban and rural areas, as
long as the fire occurred within the boundaries of a populated center, defined as any conglomerate of at least 20 contiguous
residences.

(1) (2)
P M2.5 P M2.5

2010 2016
Urban fires -0.0177** 0.125***

(0.00817) (0.00596)
Rural fires 1.045*** 2.099***

(0.0676) (0.0532)
Observations 23,410 23,408
R-squared 0.016 0.189

Table S9. Urban and Rural Fires and PM2.5

Notes: OLS estimation of the relationship between urban and rural upwind probability- and intensity- weighted fire exposure
(K) and PM2.5. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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