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Abstract

Many cities have adopted air quality alert systems to reduce the health risks from severe pollution
episodes, pairing public messaging with temporary restrictions on vehicle and industrial activity.
Despite their widespread implementation, evidence on their effectiveness remains mixed, in part
because of data limitations and a focus on traffic-only or voluntary measures. This paper
evaluates Mexico City’s air quality alert program using a fuzzy regression discontinuity design
that exploits a preset ozone threshold for policy activation. I find that alerts lead to significant
improvements in ozone and sulfur dioxide concentrations and sizable reductions in emergency
department visits for respiratory (56% decrease) and cardiovascular conditions (50% decrease).
The effects on transport-related pollutants are smaller and time-dependent, consistent with the
alerts mitigating vehicle emissions more slowly. To assess mechanisms, I analyze information-
seeking behavior, mobility data, and emissions inventories. The alerts increase online searches
about air quality and the policy itself, but not about protective behaviors. Traffic volume
falls and congestion improves, though public transit usage does not increase. Finally, I show
that the pollution reductions are largest near restricted industrial facilities, which suggests that
industrial curbs play a central role in policy effectiveness. These results can support the design
of short-term environmental response policies in cities facing both mobile and stationary sources
of pollution.
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1 Introduction

Standard economic analyses of environmental policy typically focus on two goals: reducing
externalities through mitigation or minimizing their harms by promoting adaptation. The
former efforts aim to reduce the environmental impacts from human activities, while the
latter seek to minimize damages at a given level of environmental degradation through
protective behavior. Limiting emissions of hazardous particles is a classic mitigation strategy,
and information provision is a common response aimed at facilitating adaptation. In practice,
both strategies are critical, given the health and economic costs of local air pollutants, which

can be acute.'

While navigating the political complexities of implementing long-run air pollution solu-
tions, city governments worldwide have increasingly adopted air quality warnings to reduce
the health impacts of days with very high pollution. These programs are especially relevant
in regions where extreme pollution episodes result from rapid urbanization, often charac-
terized by inadequate planning and weak environmental oversight. In many such contexts,
car-oriented investments have incentivized the growth of a bloated vehicle fleet and notorious
traffic congestion, while industrial zones remain embedded within residential and commer-
cial areas, with urban design offering few protections from pollution exposure. Air quality
warnings released when pollution passes a certain threshold inform people about the risks
of going outdoors and encourage them to reduce their exposure to hazardous air quality.
Many cities’ air quality response systems include temporary restrictions, usually on trans-
port emissions, to mitigate outdoor air pollutants. In some cities, including Mexico City,
Santiago, Delhi and Beijing, these programs also restrict—to different extents—industrial
and power generating facilities within their metropolitan area (Li et al., 2023b; Mullins and
Bharadwaj, 2015; Singh and Kulshrestha, 2020).

In this paper, I examine the causal effects of the Mexico City Environmental Alerts
Program (PCAA,? its acronym in Spanish). Since 2016, the program has combined intensive
public messaging with mandatory driving restrictions affecting over half of the city’s private
vehicles and legally binding limits on industrial operations imposing activity reductions of
up to 50% in most industrial facilities within the metropolitan area. To causally identify
the impacts of air quality warnings, I exploit the PCAA’s reliance on an arbitrary ozone-

based cutoff as a trigger for the alerts. Mexico City’s regulatory framework is complemented

1See Aguilar-Gomez and Rivera (2024) and Aguilar-Gomez et al. (2022) for reviews of studies on the
health and nonhealth effects of pollution, respectively.
2Programa de Contingencias Ambientales y Atmosféricas.



by a dense real-time monitoring network (SIMAT), an annual emissions inventory, and a
mandatory pollutant-release transfer register (RETC). I leverage these data sources and
institutional setting to implement a regression discontinuity design (RDD), which relies on

the assumption of no sharp discontinuities in relevant covariates around the alert threshold.

The policy generates strong same-day reductions in the target pollutant, ozone: The
intention-to-treat (ITT) effect of -22.7 parts per billion (ppb) represents nearly 75% of the
sample mean of 31 ppb. The hourly local average treatment effect (LATE) estimates indicate
that reductions in hourly concentration surpass 25 ppb during the afternoon hours. Ozone
is not directly emitted but is a secondary pollutant; thus, examining other pollutant-specific
reductions can shed light on which of the policy’s measures are most effective. First, I find
substantial reductions in sulfur dioxide (SOs), a pollutant whose concentrations are driven
mainly by industry emissions, with [TT and LATE estimates indicating a reduction of over
71% from the control mean. Hence, the results reveal that the apparently draconian industry

restrictions in fact effectively and swiftly improve air quality.

The effects of the alerts on other pollutants are more nuanced and time-dependent.
The LATE estimates suggest that the policy almost doubles average concentrations of ni-
trogen oxides (NOy) and carbon monoxide (CO)—both particles driven mainly by vehicle
combustion—but these effects are driven by morning spikes that become statistically in-
significant or negative in the afternoon. Thus, the results suggest that the policy is slower
and less effective in reducing transport emissions despite its incorporation of strong traffic
restrictions. Particulate matter (PM)—almost half of the concentrations of which are di-
rectly emitted by cars, with concentrations of the pollutant aggravated by dust resuspension
on unpaved roads—also declines substantially in the second part of the day, with the LATE

estimates indicating reductions of over 50%.

To estimate the policy’s impacts on health, T employ emergency department (ED) records
from public hospitals in the city, focusing on respiratory and cardiovascular admissions across
all age groups, with particular attention to vulnerable populations (under five and over 65
years old). For respiratory cases, the ITT and LATE estimates suggest reductions of 3.6
and 4.9 daily visits per hospital, corresponding to 41% and 56% declines relative to the
control mean. Among vulnerable groups, the estimated decline ranges between 37% and
50% relative to the control mean. For cardiovascular admissions, I find comparable but
less precise results. These results are robust to alternative bandwidth choices and model
specifications. As expected, I find no statistically significant effects for outcomes unrelated

to short-term exposure to air pollution.



To investigate the channels of the pollution and health improvements, I use four data
sources: an awareness measure constructed from Google search data, a novel dataset of car
counts and speed measurements from over 300 traffic sensors installed throughout Mexico
City, public transportation administrative records, and plant-level emissions reports from

the Registro de Emisiones y Transferencia de Contaminantes (RETC).

First, the health improvements described above may be driven by individuals proactively
avoiding exposure to pollution upon becoming aware of the air quality warnings. To explore
this potential adaptation mechanism, I use a citywide Google search—based awareness index
to measure post-alert interest in four topics corresponding to different aspects of adaptive
behavior. The findings suggest that the public responses lean more toward information-
seeking about air quality and particularly the policy itself, which likely reflects efforts to
comply with the driving restrictions. By contrast, there is little indication of heightened
interest in pollution-related symptoms or in exposure-avoidance behaviors, such as searching

for air purifiers or face masks.

I next analyze mitigation pathways, beginning with reductions in vehicle usage and then
turning to industrial emissions. Overall, the results suggest that both reduced mobility
and curtailed industrial activity contribute to the observed improvements in air quality and
health. The policy leads to a clear reduction in car usage, with decreases in car counts for
all vehicle types. While the ITT estimate implies compliance of approximately half (i.e., a
25% decrease in car usage), the LATE confidence interval cannot rule out full compliance.
Congestion improves by 4% on alert days, as measured by a roughly 2 km/h increase in
average traffic speed. In administrative records on subway, bus rapid transit (BRT), and
public bicycle usage, I find no statistically significant changes, though the estimates are
negative in sign, possibly reflecting increased stay-at-home behavior counteracting modal
shifts. Finally, I link monitor-level SO, responses to nearby industrial activity. Using yearly
COy emissions reported in the RETC as a proxy for plant-level pollution intensity, I find
that monitors closer to high-emitting restricted firms show larger SO, reductions, consistent

with the alerts curbing emissions from targeted industries.

Broadly, these findings contribute to the information and protective behavior literature
and, specifically, the air quality warnings literature, which is focused on the US and Europe,
has mostly overlooked programs that include mitigation and has found mixed results on their
effectiveness (see Neidell, 2009; Welch et al., 2005; Saberian et al., 2017; Tribby et al., 2013;
Dangel and Goeschl, 2025). I extend the frontier by examining the impact of such alerts on
information-seeking behavior, industrial emissions, and the ultimate measure of success of a

public health policy: reductions in morbidity.



This paper offers lessons for other megacities facing the twofold challenge of ameliorating
both industrial and transportation emissions (OECD, 2016; WHO, 2021). Many of these
cities are already investing heavily in cleaner vehicles (International Energy Agency, 2024).
However, industrial and power generation sources remain substantial contributors to urban
pollution, particularly where urban sprawl has enveloped formerly isolated industrial zones
and power plants. Several of the programs for managing severe pollution episodes rely pri-
marily on traffic-based or voluntary alert schemes, among them Delhi’s Graded Response
Action Plan (GRAP) and Jakarta’s clean-air alerts, neither of which imposes comprehen-
sive, mandatory industrial curbs.® This is despite industry continuing to account for a sizable
share of urban SOy and primary PM emissions in these regions (Sahu et al., 2023; Lestari
et al., 2020; Barraza et al., 2017). By demonstrating that mandatory industrial cuts yield the
largest same-day declines in key pollutants (e.g., a 71% drop in SO) and sharper improve-
ments near regulated plants, Mexico City’s experience highlights a policy gap that other
cities could address during pollution emergencies. The high-quality data from the Mexican
context also provide relevant insights for cities that do target industry sources in their emer-
gency management programs, such as Santiago in Chile or Beijing in China (Cheng et al.,
2017).

My results also help contextualize previous findings from the region and contribute to
ongoing debates about the effectiveness of driving restrictions. In Chile, Santiago’s environ-
mental episodes program combines temporary limits on both mobile and stationary sources
of pollutants and has been shown to generate health benefits (Mullins and Bharadwaj, 2015).
While Rivera (2021) attributes these gains to reductions in vehicle use, the role of industrial
restrictions—which are part of the policy but applied only during high-alert stages—has not
been causally evaluated. My findings suggest that curbing emissions from stationary sources
can significantly improve air quality, raising the possibility that the health effects found for
Santiago reflect reductions in both traffic and industrial activity. More generally, a related
literature has questioned the long-run effectiveness of permanent driving restrictions. In
Mexico City, for example, sustained vehicle bans led many households to purchase second,
often higher-emitting, cars, offsetting the intended pollution reductions (Davis, 2008; Gal-
lego et al., 2013). Zhang et al. (2017) document similar outcomes in Bogoté. These studies

show that, under certain conditions, such as vehicle substitution, changes in transport mode

3In Delhi, only at higher tiers (Stages III and IV) does GRAP impose binding restrictions, including
construction and demolition bans, suspension of mining activities, closure of stone crushers and, since 2023,
shutdown of industries using unauthorized fuels or diesel generators (Anugerah et al., 2021; CAQM, 2022,
2023). In Jakarta, authorities have generally issued voluntary guidance (e.g., advising factories to reduce
operations) rather than enforcing industrial shutdowns during smog episodes (Anugerah et al., 2021).



choice, or specific atmospheric responses, license plate-based restrictions can backfire.* This
paper provides new causal evidence that temporary, binding restrictions, when applied to
both vehicles and industry, can yield measurable improvements in air quality and public
health.

2 Background

2.1 The PCAA: Measures and implementation

The Mexico City Atmospheric Monitoring System (SIMAT) tracks air pollution concen-
trations and other meteorological parameters. When pollution levels pose a health risk,
the Environmental Commission of the Megalopolis (CAMe) activates a set of mandatory
measures to reduce emissions, known as the Environmental and Atmospheric Contingency
Program (PCAA). The PCAA combines mitigation and adaptation actions: It disseminates
self-protection messages and recommendations to the public while imposing pollution reduc-
tion measures on the transport sector, industry, and government activities for the duration of
the alert. Table A.1 summarizes the measures in place during the study period (2016-2019).
The program has undergone several modifications since its inception in the late 1990s. Al-
though many of these interventions existed on paper before 2016, the activation threshold
was substantially lowered in April 2016 to 155 ppb of ozone. Prior to this change, the
threshold was so high that the measures were never triggered.” Accordingly, I set the start
of the analysis period to April 2016 and its end to December 2019 to avoid confounding from
COVID-19-related disruptions to mobility and health.”

As discussed, the policy has one arm focused on adaptation. Specifically, this part of
the policy consists of communication of the current state of air quality, its associated health
hazards, and the precautionary measures that the population should take. Local mass media
(newspapers, radio, television) and official media (the AIRE CMDX app, official website, and
social network accounts) are mandated by law to spread this information. Furthermore, once
the alert (contingencia) is active, the CAMe performs constant evaluation of meteorological
conditions and updates the population at 10 am, 3 pm, and 8 pm through the channels

mentioned above.

4The evidence for China is mixed (Lin et al., 2011; Viard and Fu, 2015).

5QOnly pre-warnings, known as precontingencias, were issued, consisting solely of public health advisories.
This category was eliminated in 2016.

6Alerts can also be triggered by PM, but only three PM alerts occurred during the observation period.
These were regional alerts—a category not applicable for ozone—and covered different geographical areas. I
exclude these episodes to avoid contaminating the control group.



Under normal conditions, Mexico City enforces the “Hoy No Circula" (HNC) program,
which imposes license plate-based driving restrictions. This program prohibits 20% of the
vehicles registered in the city from operating each weekday, on the basis of the last digit
of their license plates.” Upon activation of a PCAA alert, the driving restrictions intensify
significantly beyond the regular HNC schedule, affecting approximately half of the city’s
vehicles: Each alert alternates between restricting all vehicles with license plates ending in

even digits and those with plates ending in odd digits.

Research indicates that Mexico City’s standard HNC program does not effectively mit-
igate traffic congestion and may inadvertently worsen pollution over time, largely because
the restrictions are fixed and predictable (Davis, 2008). However, the PCAA-induced restric-
tions differ from the regular HNC regime in two important ways: The selection of restricted
cars varies by final license plate digit, and the restrictions are announced only one day in

advance.

The policy seeks to achieve very short-run reductions in outdoor air pollutant concentra-
tions. The PCAA mandates several industrial restrictions during an alert episode: a 40%
reduction in emissions from all firms and factories with combustion processes or those that
generate PM, a 50% operational reduction at the Jorge Luque and Valle de México ther-
moelectric plants, and the suspension of asphalt plants and combustion activities used for
firing bricks, ceramics, and foundry in artisanal furnaces. These restrictions apply not only
to all municipalities (alcaldias) within Mexico City but also to 18 neighboring municipalities
in the State of Mexico, reflecting the transboundary nature of pollution and the regional

coordination role played by the CAMe.

The Mexico City metropolitan area hosts a dense concentration of polluting facilities,
many of them located near or within residential and commercial zones. According to RETC
data, 82 out of the 170 industrial facilities within the area of study are located in the 18
participating municipalities of the State of Mexico, and these alone account for approximately

48.2% of total reported CO4 emissions in the region.

An alert is activated when any monitoring station in the city surpasses the ozone con-
centration threshold. PCAA alerts are usually issued in the afternoon, when ozone reaches
its maximum concentrations. The modal activation hour is 4 pm (32%), followed by 3 pm
(24%) and 5 pm (24%). When the alert is announced, the government broadcasts health

information and announces the measures to be taken. The industry restrictions take effect

"A vehicle emissions verification system assigns every city-registered vehicle to one of four categories (00,
0, 1, 2). Only vehicles in the 00 category are exempt from these restrictions.



immediately. The driving restrictions begin the next morning at 5 am.® Once the alert
is active, a monitoring committee determines when pollution and weather conditions allow
deactivation. Most alerts last between one and two days, with an average duration of 39

hours.”

3 Data

To estimate the impacts of Mexico City’s air quality alert program, I utilize comprehen-
sive, high-frequency data from a diverse range of sources. Specifically, my analysis incorpo-
rates data from seven areas: PCAA regulatory information and alerts, hospital-level health
outcomes, monitor-level pollution and weather data, establishment-level annual emissions,
sensor-level traffic data, administrative records from the subway and BRT systems, and daily
citywide awareness data from Google Trends. This section details each of these data sources

and provides descriptive statistics.

3.1 Pollution and weather data

I use monitor-level SIMAT data covering April 2016 to August 2019 for Mexico City. The
network reports hourly average concentrations of PMyy (ng m~3), ozone (ppb), NO, (ppb),
CO (ppm), and SOy (ppb). The sample includes 26 monitors for PM;0, 38 for ozone, 32
for NOy, 33 for CO, and 35 for SO,. SIMAT stations also measure weather variables, in-
cluding wind speed and direction, relative humidity, and temperature, on the same hourly
schedule. These meteorological indicators are incorporated as controls in all my RDD anal-
yses. Monitor functioning suffers from a degree of intermittency. When an hourly reading
for a monitor is missing, I impute the value using the inverse-distance-weighted average of
the nearest three stations reporting that hour.'” For regression analysis, the data are then

aggregated to the hour—city level, yielding a balanced panel.

To examine spatial heterogeneity in pollution responses across monitors, I construct a
treatment intensity measure based on each monitor’s proximity to restricted industries. This

measure combines the pollution data with facility-level emissions data for 2016 from the

8See Figure A.1, which focuses on the alert issued on August 7, 2016. This alert lasted 24 hours, so it
was deactivated at 4 pm on August 8, 2016—the second red line in Figure A.1.

9 Appendix Figure A.2 shows in detail the distribution of the alert duration: 26.7% last 24 hours or less,
53.3% last between 24 and 48 hours, and 20% last more than 48 hours.

10The imputation is conducted at the original hour-station level; it decreases the share of missing values
from 21.7% to 0.2% for Oz, 29.4% to 0.6% for SO3, 33.0% to 1.4% for CO, 41.6% to 4.9% for NO,, and
52.2% to 15.1% for PM1q. Since the RDD analyses are conducted at the hour—city level, the final dataset
has no missing values, as shown in Table A.3.



RETC, a self-reported inventory of annual emissions at establishment level, submitted by
firms and enforced through oversight by the Federal Attorney for Environmental Protection
(PROFEPA) under the Ministry of the Environment and Natural Resources (SEMARNAT).
This registry is analogous to the Toxics Release Inventory in the US and the European
Pollutant Release and Transfer Register (E-PRTR), as it follows the structure and reporting
guidelines of the OECD PRTR framework (OECD, 2014; SEDEMA, 2018). It covers listed

air and water pollutants and provides geographic coordinates for each reporting facility.

SOs is the pollutant most directly targeted by the industrial restrictions, but SOy emis-
sions are not reported in the RETC. I therefore use each facility’s reported COs releases
as a proxy for treatment intensity: Fossil-fuel combustion that generates SO, invariably
produces CO,, and CO4 volumes scale with a plant’s overall emissions potential. Section 6
describes how I aggregate this proxy to the monitor level to construct a proximity measure
that accounts for both the number of nearby plants and the scale of each plant’s emissions.
This proxy correlates strongly with monitor-level SO, concentrations in the cross-section

(p > 70%), which provides empirical support for its use in the heterogeneity analysis.

3.2 PCAA documentation

The running variable (RV) of my main RDD specification—the difference between the
citywide daily maximum ozone measurement and the alert threshold—is constructed from
station-level pollution readings and the applicable pollution thresholds. The latter, along
with the alert history, are derived from official communications published in the Mexico City
Gazettes. 1 process the historical record of all alerts issued during the analyzed period and
a detailed list of all the program’s modifications since its inception to produce a daily vari-
able indicating the applicable alert threshold, which remained constant during the period

analyzed in this paper.'!

Figure 1, Panel A, displays the daily maximum ozone readings during the analysis pe-
riod alongside the alert activation threshold. The threshold is relatively high at 155 ppb,
approximately 3.1 times the World Health Organization’s (WHOQO’s) guideline for daily ozone
exposure (World Health Organization, 2021), meaning that only extreme pollution events
trigger an alert under the PCAA program. In practice, just fifteen alerts were issued over
the whole analysis period. This design feature is relevant for interpreting the results in light

of the existing literature: A common concern about air quality warnings is that repeated or

1 The program formally includes a Phase II, which entails additional industry and driving restrictions.
However, no Phase II alerts have ever been issued, so this component is omitted from Table A.3 and from
the rest of the analysis for simplicity.


http://data.consejeria.cdmx.gob.mx/index.php/gaceta
http://data.consejeria.cdmx.gob.mx/index.php/gaceta

long alerts may give rise to alert fatigue and reduced responsiveness (Saberian et al., 2017;
Dangel and Goeschl, 2025). Panel B shows that the alerts were not only rare but also brief,
with 80% lasting no more than 48 hours.

Figure 1: PCAA alerts: Frequency and duration

A. Ozone readings and alert threshold
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Note: Author’s calculations from alert records and daily air quality readings. Panel (a) shows the max-
imum daily monitor-level ozone readings, measured in parts per billion, throughout the analysis period
(01/04/2016-31/12/2019), with the dashed line representing the PCAA alert threshold. Panel (b) shows
alert days, split by duration. Months without alerts throughout the sample are omitted from the visualiza-
tion.

3.3 Urban flows

From the Mexico City Open Data Portal, I obtain hourly traffic data from 343 sensors and
video detectors located throughout the city. This dataset encompasses over 10.3 million
records, detailing hourly vehicular flow and average speeds from 2016 to 2019. Car counts
are disaggregated by vehicle type. I use speed as a measure of overall congestion reductions
caused by the alerts and leverage detailed car counts by vehicle type to scrutinize the workings

of the policy. Appendix Figure A.3 shows the hourly average car count and speed, as



measured by the sensors and video detectors. The mirroring trends between these two

variables show their complementary nature.

3.4 Health outcomes

To investigate the health impacts of PCAA alerts, I use data on ED visits for respiratory
and cardiovascular diseases (CVDs), obtained from public hospital administrative records for
Mexico’s largest public healthcare system, which covers more than half of the population.
These records are publicly available and include all hospitals under the Ministry of Health
(Secretaria de Salud, SSA) system and national hospitals. There are 51 hospitals in the
city in this subsystem, and they are well distributed across the city, as shown in Figure 2
discussed below. Until 2020,'* the SSA hospitals provided care to individuals insured under
Seguro Popular, the noncontributory healthcare system for informal or unemployed workers
and the uninsured population. Recent estimates suggest that, in practice, the SSA network
cares for over two-thirds of the population. Overall, while this sample lacks data from private
hospitals, it does cover the bulk of the public health system. Only 7% of the population has
private insurance nationwide, although there is considerable regional variation (Juan Lopez
et al., 2015).

3.5 Awareness

Individuals might react to the alerts by avoiding exposure. A necessary condition for them
to do so is that they have access to information about contemporaneous air quality and its
health risks, whether directly through the alerts or by actively seeking additional information.
To analyze the role of information-seeking behavior as a potential mechanism driving the
health improvements caused by PCAA alerts, I propose an awareness measure using search
indexes for relevant terms from Google Trends. By default, the Google Trends results are
normalized by query time and location. These parameters are set for the years 2016-2019
and Mexico City, respectively. Each data point is divided by the total number of searches
within the user-specified geography and time range to compare relative popularity. The
resulting numbers are then scaled to a range of 0 to 100 based on a topic’s search proportion

within all searches.

I group search terms into four broad topics of interest: pollution, symptoms, prevention,

and PCAA. Fach category is designed to capture a distinct dimension of awareness, with

12Gince 2020, the Mexican public healthcare system has been undergoing a transition toward universal
coverage, leading to shifts in how care is organized between SSA establishments and other hospitals.

10



my goal being to distinguish information-seeking behavior aimed at complying with policy
restrictions from behaviors explicitly aimed at improving the adoption of prevention measures
or that reflect awareness of pollution-related symptoms. The pollution category focuses on
general environmental conditions, including search terms such as "ozone" and "air quality."
The symptoms category encompasses pollution-related health issues, with search terms such
as "itchy eyes" and "cough." Prevention refers to protective actions or devices, including
"face mask" and "air purifier," among others, and finally, PCAA encompasses terms directly
linked specifically to the program, such as "contingency/contingencia" (the official name for
the alert). The specific terms are grouped into each topic with the “+” operator in Google
Trends, which functions as a logical OR. Hence, the output is a composite index of the
relative popularity of each of these four topics over time within Mexico City. The set of
terms for each topic, originally searched in Spanish, along with their corresponding English

translations, is presented in Appendix Table A.2.

Appendix Figure A.4 shows the evolution of interest over time for the four constructed
indices from April 2016 to December 2019. The pollution and PCAA topics display clear
spikes during this period, whereas interest in symptoms and prevention fluctuates more

irregularly and with no discernible pattern.

3.6 Descriptive statistics

Figure 2 shows the geographical distribution of the pollution monitors, hospitals, and traffic
sensors collecting the data used in the analyses. The network includes 38 pollution monitors,
51 hospitals with EDs, and 343 traffic sensors. These are distributed throughout the Mexico
City metropolitan area, with higher density in more populated and transit-intensive zones

and sparse measurement in the rural and conservation areas in the south of the city.

Table A.3 provides descriptive statistics for the main variables employed. The table
shows that the average hourly ozone levels in the city are 30.31 ppb. This average is high
considering that the WHQO’s current guidelines recommend an 8-hour daily maximum of 60
pg/m’ (~30 ppb) not to be exceeded more than 3—4 times per year WHO (2021). Similarly,
average PM;o concentrations in the city are 42.53 ug/ m®, which far exceed the WHO annual
guideline of 15 ug/ m®. This indicates significant health risks associated with ozone and PM
pollution in Mexico City, consistent with the PCAA’s use of the levels of these two pollutants

as the criteria for its alerts.'”

13 As described in the empirical strategy section, I focus on alerts triggered by ozone given the rarity of
PMiq alerts, which are excluded from the sample.

11



Figure 2: Data: Sources and coverage

Rural areas - Traffic sensors
Il Urban green spaces 4 Hospitals
Monitoring stations

Note: The map displays the location of the data collection points for the main variables employed in this
paper. These include a) weather and pollution monitoring stations, b) traffic monitors (sensors and video),
and c) all public hospitals in Mexico City. Areas covered by vegetation, including urban green areas and
rural zones, are highlighted in green.

For NOy, the mean level is 39 ppb (~73 ug/m®). While there are no specific guidelines for
NOy, these concentrations are well above the annual WHO guideline for NOy of 10 pug/ m®.
In contrast, the average SOy concentration is 3.98 ppb (& 10.5 ug/ m3), well below the WHO
24-hour guideline of 40 pg/m®. Finally, the average CO level of 0.5 ppm (~ 0.57 ug/m®)
is also below the WHO 8-hour guideline of 4 ug/ m°, suggesting very low carbon monoxide

pollution in the city.

Table A.3 also includes information on traffic, health, and public awareness. Panel (b)
reports hourly traffic data, showing an average congestion speed of 47.37 km/h and vehicle
counts dominated by cars (mean = 290,286.55), with smaller contributions from trucks,
buses, and small buses/vans. Panel (c) summarizes hourly ED visits for respiratory and
CVD diagnoses, with respiratory cases (mean = 11.58) being more frequent than CVD
(mean = 3.14), for the general population and vulnerable age groups (under 5 and over
65 years old). Panel (d) shows the descriptive statistics for information-seeking behavior,
employing the four measures proposed. Note that the levels cannot be compared across the

measures since they are each adjusted with respect to their own distribution.

12



4 Empirical strategy

An alert is triggered whenever ozone levels surpass 155 ppb in any station in the city. Ex-
ploiting the arbitrariness of the PCAA alert threshold, I employ an RDD where the RV is
the maximum ozone value relative to the threshold at ¢t and the outcomes of interest are
analyzed at t + 1, when all restrictions are active. While the alert threshold is set by a Mex-
ico City regulation, it is the Metropolitan Environmental Commission that receives the data
and issues the alerts, such that there is an imperfect match between the air quality index
and alerts. Hence, I employ a fuzzy regression discontinuity (FRD) methodology to identify
the causal impacts of the PCAA. The FRD allows me to estimate the LATE of the program
under specific assumptions (Hahn et al., 2001). The first assumption is monotonicity, which
requires no local defiers whose behavior contradicts the treatment assignment rule. Given

the centralized mode of alert activation, this assumption is reasonable.

The second assumption is that the instrument is relevant. Figure 3 evaluates treatment
compliance by plotting the share of days with an alert along the RV, defined as the differ-
ence between the maximum ozone reading in the city and the 155 ppb threshold. Following
Calonico et al. (2015), the number of evenly spaced bins is set to represent the overall vari-
ability of the raw data. I estimate the local linear fits separately on each side of the threshold
using a triangular kernel and optimal bandwidth to minimize the mean squared error (MSE)
of the resulting estimator, as in Calonico et al. (2017). Consistent with legislation, there is
a discontinuous jump in the probability of a PCAA alert being issued, but the discontinuity
is not sharp (i.e., 0 to 1), which supports my choice to use an FRD design. Quantitatively, I
estimate that there is a 51.8-percentage-point greater likelihood of an alert’s being triggered
on days with peak hourly ozone readings just above the 155 ppb threshold than on days with
readings just below it (Appendix Table A.4). The magnitude of this discontinuity implies
that the LATE point estimates will be approximately 1.9 times larger than the ITT. The
third assumption, local smoothness (Dong, 2018), implies that units cannot sort themselves

around the threshold to attain or avoid treatment and is discussed in Section 4.1 below.

More formally, I derive estimates of the first stage, the I'TT, and the LATE described

above by estimating nonparametric local linear regressions of the following form:

Yiii1 = Bo + TAbove, + f(Daily Max Ozone,) + &. (1)

In Equation (1), Yy is the dependent variable for hour i of day ¢. This variable represents

one of the various outcomes of interest, such as daily hospital admissions, pollution levels,
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or behavioral responses. Above, is an indicator for whether a PCAA alert is triggered on
day t based on the ozone rule. The term f(Daily Max Ozone,) serves as the RV in this
RDD; it is a nonparametric function of the daily maximum ozone readings centered at the
threshold (155 ppb). The term ¢; is a mean-zero idiosyncratic error term. For all outcomes,

the parameter of interest is 7, the I'TT.

In addition to presenting reduced-form results from Equation (1), I estimate LATESs using

nonparametric local linear regressions of the following form:

Y = Bo + TAlert, + f(Daily Max Ozone,) + ;. (2)

Here, Alert;; is an indicator for whether hour 7 of day t was treated by a PCAA alert.
Leveraging the RDD framework, I instrument for Alert, with Above; to obtain the LATE.
Essentially, this rescaling adjusts the estimates from Equation (1) by the magnitude of the

first-stage discontinuity.

As discussed, all the RDD specifications are estimated by means of nonparametric local
linear regressions with a triangular kernel. This method, detailed in Calonico et al. (2019),
consists of restricting the sample to observations near the threshold and estimating Equa-
tion (1) with a weighted least squares regression. To determine which observations are near
the threshold, I use the hj;sg bandwidth selection algorithm, which determines which ob-
servations can be considered near the threshold by minimizing the asymptotic MSE of the
RDD estimate given a kernel and polynomial order choice. I use a triangular kernel be-
cause it provides optimal weights for the hj; 55 algorithm (Cattaneo et al., 2019) and employ
linear polynomials (p = 1). I adjust the bandwidth selection algorithm and the inference
of standard errors for a heteroskedasticity-robust nearest-neighbor variance estimator. The
reported confidence intervals are constructed with robust bias correction as described in
Calonico et al. (2014). In Section 7, I show that the interpretation of my findings is robust
to variations in the polynomial order, kernel, and standard error choices. Finally, to adjust
for weather patterns, I include hourly averages of weather conditions such as temperature,

humidity, and wind speed.

4.1 RV manipulation

An important potential threat to the validity of my FRD design is that city officials could
try to manipulate the RV to prevent the triggering of an alert. If the alerts inform the public

about how bad air quality is, this could have political costs for incumbent administrators,
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Figure 3: Discontinuity in the probability of alert activation
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Note: The figure plots the discontinuity in the probability of an alert being activated around the ozone
cutoff. The circles represent the local means of the outcome. Following Calonico et al. (2015), I compute
these local means by partitioning the support of the RV into quantile-spaced bins. The number of bins is
selected to represent the overall variability of the raw data. The solid lines depict local linear fits estimated
separately on each side of the threshold with a triangular kernel, a local linear polynomial, and an optimal
bandwidth A,se, as in Calonico et al. (2017). The dashed lines are global fourth-order polynomials estimated
separately on each side of the threshold.

as it has been found that exposure to information on poor air quality deteriorates trust
in local government (Yao et al., 2022; Chen et al., 2024). However, manipulating reported
pollution readings would be challenging because the data are publicly available and the alerts
are issued in near real time, with an average lag of only three hours after the threshold is

passed.

To investigate whether manipulation could have taken place, I test whether the RV’s
distribution is continuous at the threshold. In this context, if many more pollution readings
fall just short of the threshold (to its left) than beyond it, this would suggest manipulation.
Figure 4 employs the Cattaneo et al. (2019) and McCrary (2008) no-manipulation tests to
rule out bunching around the alert threshold. Both figures confirm that the RV density
is continuous around the threshold. The Cattaneo et al. (2019) test statistic confirms the
visual test: Given the p-value of 0.992, I cannot reject the null hypothesis that the RV is

continuous at the threshold.
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Figure 4: No-manipulation test
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Note: Running variable is the daily city-level maximum pollution level relative to the alert threshold. Panel
A employs the Cattaneo et al. (2019) test and Panel B the McCrary (2008) test.

5 Results

5.1 Impacts of PCAA alerts on air pollution

The PCAA program is a multipronged intervention designed to mitigate the health risks
associated with extreme pollution episodes. Although data on the impacts of some policy
components, such as real-time industrial production intensity by facility, are unavailable, the
city’s monitoring system provides rich pollution data and detailed inventories, enabling me

to assess the program’s effectiveness.

Automobile emissions are the leading source of emissions of CO and NO,. Table 1 shows

that transport accounts for more than 80% of CO emissions and more than 70% of NOy (NO
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and NO;). On the other hand, area sources such as unpaved roads, urban waste, agriculture,
vegetation, and construction drive the bulk of PM;q emissions, with only 12% attributable
to personal cars and 22% to other vehicles. Automobile emissions are not a primary source
of SOy in most contexts (Zhang et al., 2017), and Mexico City is no exception. Most SO,
emissions in the city originate from industrial combustion processes, including in two large
combined-cycle thermoelectric plants, chemical and metallurgic plants, and numerous asphalt

and brick factories.

Table 1: Emissions in Mexico City by particle and type of source

Total Industry Area sources Mobile sources Others
Particle Emissions [ton/year]
PMy 35,274.0  3,574.3 20,015.3 10,899.1 785.3
PMs, 5 14,012.0  2,526.3 5,876.1 5,437.8 172.1
SO 2,466.0 1,150.8 980.7 334.0 0.0
co 643,921.0 6,277.7 23,811.9 613,831.7 0.0
NO, 140,156.0 11,915.0 14,264.1 112,350.0 1,627.2

Industry Area sources Mobile sources Others

Particle Percentage
PMy 10.1% 56.7% 30.9% 2.2%
PM, 5 18.0% 41.9% 38.8% 1.2%
SO 46.7% 39.8% 13.5% 0.0%
co 1.0% 3.7% 95.3% 0.0%
NO, 8.5% 10.2% 80.2% 1.2%

Note: Percentages calculated from the Mewzico City Emissions Inventory 2016. This document, prepared by
the Secretariat of the Environment, brings together the report of emissions of criteria pollutants, toxic gases
and greenhouse effect compounds in 93 categories: 25 point sources, 55 categories of area sources, 11 types of
vehicle sources and two natural sources. For the development of this inventory, methodologies described in
the Manuals of the Emissions Inventory Program of Mexico, the California Environmental Protection Agency
(CalEPA), the United States Environmental Protection Agency (US EPA) and the Intergovernmental Panel
on Climate Change (IPCC) were used. Ozone is not included in the emissions inventories because it not
directly emitted by any source but is formed when nitrogen oxides (NOy) and volatile organic compounds
(VOCs) react in the presence of sunlight.

Given this emissions composition, the effect of PCAA alerts on ozone levels hinges on their
ability to influence the precursors of ozone formation and on the interactions between these
changes. Ozone, a secondary pollutant, forms from NO, and volatile organic compounds
(VOCs) in the presence of sunlight through a process that depends on the concentrations
of these precursors in nonmonotonic, nonlinear ways Zhang et al. (2017). This dependence

can result in either NOy-limited or VOC-limited regimes, affecting ozone formation rates

17



differently based on the availability of NO and VOCs.'* In other words, the impact depends
on both the effectiveness of the various restrictions imposed by the policy and the local

chemical regime.
Figure 5: Impact of PCAA alerts on next-day hourly Oj levels
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Note: The figure presents estimates of the intention-to-treat (ITT) effect for each hour of the day, derived
with a triangular kernel, a local linear polynomial, and an optimal bandwidth hj;sg. All estimates are
obtained with the rdrobust package by Calonico et al. (2017). The confidence intervals are computed with
robust bias correction, following the approach of Cattaneo et al. (2019). All estimates include a vector of
meteorological controls. The sample covers the period from April 4, 2016, to December 31, 2019. The figure
shows 90% (dark gray) and 95% (light gray) confidence intervals.

Figure 5 demonstrates that alert activation significantly reduces ozone, the pollutant tar-
geted by the policy levels, with the effect becoming more pronounced as the day progresses.
Table 2, Column (a) shows that the average ITT effect on ozone throughout the day is sub-
stantial, with a reduction of 22.7 ppb, which amounts to nearly three-quarters of the sample
mean of 31 ppb. The ITT captures the effect of ozone levels just above the regulatory cutoff,
regardless of whether an alert is actually issued, and reflects real-world policy performance
under imperfect implementation. The probability of an alert being triggered when the ozone
threshold is exceeded in the pollution data increases by approximately 70%. With the aim of
providing an estimate of the policy’s potential under full enforcement, I scale up the LATE

reported in Panel C considering this level of compliance.

The impacts of the PCAA alerts on daily average concentrations of other pollutants
are also reported in Table 2. The results reveal a mixed pattern across pollutants but

consistently large effects for those most closely tied to industrial activity. Reductions in SO,

141n high-NO, urban environments, increasing NO emissions can reduce ozone levels because of the NO,
titration effect, where NO reacts with ozone, converting it into NOg and oxygen (Os). This effect is most
pronounced in areas with high traffic or industrial activity and is especially relevant during the evening and
night, when photochemical ozone formation slows. Conversely, in NOy-limited environments, higher NOy
levels can increase ozone formation by generating oxygen radicals that drive ozone production.
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are large: Alerts are associated with an average decrease of 4.5 ppb, equivalent to a 71%
decline relative to the control mean (calculated from observations within the bandwidth but
below the threshold). This finding suggests that the industrial restrictions activated by the
alerts effectively curb SO, emissions. However, because SO, is not a precursor to ozone,

these reductions are unlikely to explain the observed decrease in ozone concentrations.

Concentrations of NO, and CO—Dboth primarily emitted from vehicle combustion—show
a more complex pattern. On average, both increase on alert days, indicating that the policy
is not consistently successful in curbing transport-related emissions despite imposing strong
restrictions on traffic. However, as discussed below, both pollutants also show reductions
(noisy in the case of CO) during restricted afternoon hours, when ozone levels fall most
sharply. The average increase in NO, is not necessarily inconsistent with the ozone reduc-
tion, as higher NO, can enhance ozone titration under NOy-abundant (or VOC-limited)
conditions (Lin, 2010). The increase in CO concentrations is of limited concern from a pol-
icy perspective: Baseline levels are already low, with a control mean of 0.42 ppm, which
amounts to barely 5% of the WHO-recommended limit. In other words, Mexico City does
not face a CO problem at the population level, and CO is not a meaningful target under the

alert policy.

Table 3 disaggregates these effects by hour of day. For SO, the reductions persist across
the day, consistent with the industrial restrictions remaining active. NO, shows increases
during the morning hours but declines between 1 pm and 5 pm, the same window during
which ozone levels fall most steeply (see Figure 5). The CO results are mostly underpowered,

with the changes throughout the day lacking statistical and economic significance.

Finally, PM;, concentrations also decline significantly during the afternoon hours. The
temporal patterns for most of the particles suggest that the policy is more effective in reducing
emissions during the afternoon, when most discretionary trips happen and thus there is
more scope for reduction in the number of trips (Winick et al., 2008). For the case of
PM;g, the reductions may reflect a combination of factors, including suppressed emissions
from the limits on industry, power generation, construction, and waste burning and reduced
resuspension of road dust due to lower vehicle traffic. The latter is particularly relevant
in peripheral areas with unpaved or poorly maintained roads, where vehicle movement is a
major source of PM. The evidence thus suggests an additional pathway through which traffic

restrictions can improve air quality beyond tailpipe emissions.

19



Table 2: Impact of PCAA alerts on pollution

O3 SO, CcO NO, PM;

(1) (2) (3) (4) (5)
Panel A. First Stage 0.741 0.744 0.732 0.738 0.711
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95% [0.69;0.79] [0.69;0.80] [0.68;0.79] [0.68;0.79] [0.66;0.76]
Panel B. ITT -22.688 -4.579 0.231 18.387 -3.599
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 0.230
CI 95% [-26.732;-18.644] [-6.209;-2.948] [0.138;0.324] [11.153;25.620] [11.153;2.282]
Control Mean 31.429 6.351 0.422 33.739 52.415
Panel C. LATE -30.628 -6.154 0.316 24.920 -5.060
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 0.233
CI 95% [-36.690;-24.566] [-8.431;-3.877] [0.180;0.452] [14.678;35.161] [-13.372;3.251]
Bandwidth 4.9 4.9 5.1 5.0 5.4
Obs(left|right) 384|336 384|336 504|360 504|360 504|360

Note: Panels A and B present estimates of Equation (1) derived with a triangular kernel, a local linear
polynomial, and an optimal bandwidth hj;sg. In Panel A, the dependent variable is a dummy variable
In Panel B, the control mean corresponds to the left-hand-side
prediction of the nonparametric regression at the threshold. Panel C reports the local average treatment
effect (LATE) calculated as the ratio of the intention-to-treat (ITT) effect to the first-stage estimate. All
estimates are obtained with the rdrobust package by Calonico et al. (2017). The reported coefficients,
p-values, and 95% confidence intervals are computed with robust bias correction, following the approach of

indicating whether the alert is active.

Calonico et al. (2019). All estimates include a vector of meteorological controls.
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Table 3: Impact of PCAA alerts on pollution, by time of the day

00 to 05 18 to 23 00 to 05 06 to 12 13 to 17 18 to 23
(1 (4) (5) (6) (7 (8)

Panel A. First Stage 0.577 0.555 0.587 0.670 0.562 0.544
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95% [0.46;0.70] [0.46:0.65] [0.46;0.71] [0.57:0.77] [0.46;0.67] [0.44;0.65]
Panel B. ITT -5.296 -0.314 0.166 0.302 -0.001 0.025
p-value p < 0.001 0.537 p < 0.001 p < 0.001 0.953 0.503
CT 95% [-7.787:-2.805] [-1.311;0.683]  [0.078;0.253] [0.139;0.464] [-0.047;0.045] [0.097;-0.047]
Control Mean 6.410 2.215 0.234 0.410 0.557 0.479
Panel C. LATE -9.178 -0.564 0.283 0.451 -0.002 0.045
p-value p < 0.001 0.530 0.002 0.002 0.954 0.508
CT 95% [-13.997;-4.358] [-2.322;1.195]  [0.103;0.463] [0.170;0.731] [-0.083;0.078] [0.180;-0.089]
Bandwidth 8.2 11.2 8.2 6.7 19.3 8.9
Obs(left|right) 204[108 288[120 204[108 189112 490[125 204/108

00 to 05 18 to 23 00 to 05 06 to 12 13 to 17 18 to 23

(1) 4) (5) (6) (7 (8)

Panel A. First Stage 0.599 0.572 0.606 0.683 0.540 0.553
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95% [0.48;0.72] [0.47:0.68] [0.48;0.73] [0.58;0.79] [0.44;0.65] [0.45;0.66]
Panel B. ITT 9.759 -1.934 -1.690 -0.394 -16.760 -14.910
p-value p < 0.001 0.326 0.608 0.935 p < 0.001 0.006
CT 95% [4.684;14.835] [-5.796;1.929]  [-8.148;4.768] [-9.813;9.024]  [-22.816;-10.704] [-25.541;-4.280]
Control Mean 19.013 33.154 44.067 53.622 51.633 50.978
Panel C. LATE 16.308 -3.380 -2.780 -0.578 -30.299 -26.950
p-value 0.001 0.316 0.606 0.935 p < 0.001 0.010
CT 95% [6.795;25.821] [-9.981;3.222] [-13.339;7.778] [-14.512;13.355] [-40.590;-20.008] [-47.370;-6.530]
Bandwidth 7.5 7.5 7.0 6.0 17.5 8.4
Obs(left|right) 180(102 180102 180102 189|112 390[125 204/108

Note: Panels A and B present estimates of Equation (1) derived with a triangular kernel, a local linear
polynomial, and an optimal bandwidth hy;sg. In Panel A, the dependent variable is a dummy variable

indicating whether the alert is active.

In Panel B, the control mean corresponds to the left-hand-side

prediction of the nonparametric regression at the threshold. Panel C reports the local average treatment
effect (LATE) calculated as the ratio of the intention-to-treat (ITT) effect to the first-stage estimate. All
estimates are obtained with the rdrobust package by Calonico et al. (2017). The reported coefficients,
p-values, and 95% confidence intervals are computed with robust bias correction, following the approach of
Calonico et al. (2019). All estimates include a vector of meteorological controls.
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5.2 Impacts of air quality warnings on health

Ultimately, the central question is whether the PCAA alerts translate into better health out-
comes. As discussed above, the program is designed primarily as a public health intervention
rather than as a long-term pollution abatement measure. Table 4 summarizes the effects of
alerts on ED visits for respiratory and CVD diagnoses across all ages and for vulnerable
groups (children younger than 5 and adults older than 65). The first-stage estimates again

show strong compliance, with a significant jump in alert activation across all specifications.

The ITT and LATE estimates point to substantial reductions in respiratory morbidity
following an alert. The average hospital records 4.9 fewer respiratory ED visits per day for
the general population (LATE, p = 0.008), a 56% drop relative to the control mean of 8.76.
For vulnerable groups, the estimated reduction is 2.1 daily visits (LATE), or approximately
50% of the baseline average of 4.14. These are sizable effects, especially considering that
respiratory ED visits are one of the key outcomes the alert system aims to prevent. For
CVD cases, the estimated effects are smaller and less precise. The LATE estimate for the
general population corresponds to a reduction of 1.2 visits per hospital per day—roughly
a 45% drop from the control mean of 2.68—but is only marginally significant. Among
vulnerable patients, the estimated decline is smaller in both absolute and relative terms and

not statistically significant.

These findings indicate that improvements in air quality, specifically reductions in harmful
pollutants such as ozone, SO,, and PM," likely reduce the incidence of severe respiratory
episodes, despite the short-lived increase in NO, and CO. The similar relative magnitudes of
the effects among the general population and vulnerable groups suggest that it is unlikely that
the health effects are entirely driven by the information component of the policy. If the effects
operated entirely through an avoidance channel, we would expect to see greater impacts on
vulnerable populations since the messaging targets them. This ordering of effects is also
consistent with previous findings showing that acute pollution shocks have more immediate
impacts on respiratory than on cardiovascular conditions (Brink et al., 2019; Schlenker and
Walker, 2016). As a placebo check, Section 7 shows no significant effects of the alerts on

outcomes unrelated to acute pollution exposure, such as cancer and digestive diseases.

Benchmarking the absolute magnitude of these effects against the effect sizes in the exist-

ing literature is challenging because many studies focus on isolating the impact of reductions

15The PCAA targets ozone and PM as the key pollutants that trigger alerts, given the severe health risks
that they pose. The WHO also recognizes both as primary air pollutants affecting human health (World
Health Organization, 2024).
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in a single pollutant while holding information provision constant. In contrast, the context
here features simultaneous responses from multiple pollutants, and the policy is highly salient
to the public. By way of comparison, Fan et al. (2023) estimate that a 1 ug/ m® reduction
in SO, concentrations leads to a 0.9% decrease in cardiovascular deaths among people over
60 years and a 1.5% decrease among children under 5. Extrapolation of these results to a
7 ppb (18 pug/m® ) decrease would imply a reduction of ~20% in ED visits among vulner-
able populations. This figure is substantially lower than my I'TT estimate, which reflects a
40% reduction for the same age groups. However, Neidell (2009) highlights the significant
impact of information provision itself, finding that controlling for information increases the
estimated effect of ozone by approximately 160% for children and 40% for elderly people.
Accounting for this scaling effect would make my estimate more comparable, though direct

comparisons remain difficult because of the simultaneous responses of multiple pollutants.

Table 4: Impact of PCAA alerts on ED visits

Respiratory = Respiratory CVD CVD

(All) (<5 and >65) (All) (<5 and >65)

(1) (2) (3) (4)
Panel A. First Stage 0.739 0.739 0.738 0.733
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95 percent [0.69;0.79] [0.69;0.79] [0.69;0.79] [0.68;0.79]
Panel B. ITT -3.607 -1.539 -0.869 -0.357
p-value 0.007 0.039 0.067 0.093
CI 95 percent [-6.24;-0.98]  [-3.00;-0.08]  [-1.80;0.06] [-0.77;0.06]
Control Mean 8.756 4.140 2.684 1.012
Panel C. LATE -4.882 -2.082 -1.178 -0.487
p-value 0.008 0.042 0.070 0.097
CI 95 percent [-8.51;-1.25]  [-4.09;-0.08]  [-2.45;0.10] [-1.06;0.09]
Bandwidth 5.0 5.0 5.0 5.1
Obs(left|right) 384|336 384|336 384|336 504(360

Note: All estimates include a vector of covariates X, which incorporates contemporaneous weather variables.
Panels A and B present estimates of Equation (1) derived with a triangular kernel, a local linear polynomial,
and an optimal bandwidth hp;sg. In Panel A, the dependent variable is a dummy variable indicating
whether the alert is active. In Panel B, the control mean corresponds to the left-hand-side prediction of
the nonparametric regression at the threshold. Panel C reports the local average treatment effect (LATE)
calculated as the ratio of the intention-to-treat (ITT) effect to the first-stage estimate. All estimates are
obtained with the rdrobust package by Calonico et al. (2017). The reported coefficients, p-values, and
95% confidence intervals are computed with robust bias correction, following the approach of Calonico et al.
(2019).
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6 Mechanisms

The health impacts discussed above likely reflect the combined operation of two key mech-
anisms. Clearly, improvements in air quality are consistent with a mitigation pathway. The
previous section documented sharp reductions in criteria pollutants, suggesting that the re-
strictions on industrial activity and vehicle use effectively reduce emissions. Second, the
policy’s health messaging may prompt behavioral adaptation, such as staying indoors or
reducing physical activity, which can lower individual exposure to pollution. In this section,
I provide more direct evidence to test these two pathways: I investigate the adaptation chan-
nel using patterns of information-seeking behavior and characterize the mitigation channel

by analyzing changes in industrial activity and vehicle usage.

6.1 Adaptation

One mechanism for the health results could be that individuals react by avoiding exposure to
pollution when they become aware of an air quality warning. To investigate this conjecture,
I explore whether individuals respond to the policy announcement with information-seeking
behavior that might support their self-protection measures. Specifically, I use the search
indexes for the four topics detailed in Section 3.5, designed to capture information-seeking
corresponding to different behavioral responses: a) air quality levels, b) exposure symptoms,

¢) prevention/avoidance measures and d) the PCAA program restrictions.

Figure 6 plots the evolution of interest over time in these four topics in a 10-day window
around an alert. The figure displays the coefficients for the time relative to alert activation,
adjusted for seasonality and conditional on the inclusion of day-of-the-year and day-of-the-
week fixed effects. The omitted category includes all days outside this window. I restrict the
length of the window to five days before and after an alert is issued to avoid overlap in the
windows of analysis. Time j = 0 indicates the date when the alert is issued, and time j =1

is the date when the driving restrictions become active.

The results provide suggestive evidence that individuals’ responses are more geared to-
ward understanding air quality (Panel A) and especially the policy itself (Panel D), poten-
tially indicating that their search is aimed at ensuring compliance with driving restrictions.
When I look specifically at searches for pollution-related symptoms (Panel B) and searches
that might support adaptation behaviors (Panel D), the trends for alert days are not statis-

tically different from those for nonalert days.
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Figure 6: Impacts of PCAA alerts on pollution interest /awareness
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Note: Figures A to D show the normalized Google Trends search index for four topics: pollution, symptoms,
prevention, and PCAA. The topic pollution includes the following combined Spanish search terms: “con-
taminacion,” “smog,” “ozono,” “IMECA,” “calidad del aire,” “aire libre,” and “contaminacion ambiental.”
Symptoms includes “asma,” “alergia,” “dificultad para respirar,” “ojos irritados,” and “problemas respirato-
ri0s.” Prevention includes “prevencion,” “exposicion al aire,” “mascarilla,” “ filtro,” “ purificador de aire,” and
“cubrebocas.” PCAA (Programa para Contingencias Ambientales Atmosféricas) includes “contingencia ambi-
ental,” “alerta ambiental” “fase 1, “fase 2, “semdforo ambiental” and “programa PCAA.” Data span from
2016 to 2019 and are restricted to Mexico City. Search results are normalized by query time and location.
All models include fixed effects for year, month, and day of the week.

Next, I apply an RDD approach using the four search indexes, but the analysis is con-
strained by lower statistical power because I have fewer observations and the spatial res-
olution of the outcomes is coarser. Appendix Table A.G presents mixed, statistically in-
significant effects. Except for air pollution searches, for which the estimates are extremely
noisy (p = 0.95), the coefficient signs are consonant with theory: The changes in searches
about protective behaviors, prevention, and the PCAA program are positive (p = 0.14 and
p = 0.33), suggesting spikes in information-seeking. Meanwhile, searches for certain symp-

toms decline (p = 0.16), consistent with the health improvements documented in Section
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6.2 Mitigation

6.2.1 Impacts of PCAA alerts on mobility patterns

Prior research on Mexico City’s permanent driving restriction program Hoy No Circula shows
that it led many drivers to purchase an older, more polluting second vehicle, which under-
mined its environmental goals (Davis, 2008). While PCAA alerts are plausibly exogenous,
preventing drivers from purchasing vehicles in anticipation of specific alerts, many residents
may still respond by using a backup vehicle on alert days. Accordingly, what sign we should

expect for the policy’s effect on vehicle emissions is unclear.

Evidence on changes in vehicle usage is presented in Table 5. Both the ITT and LATE
estimates indicate compliance with the restrictions of over one-half. Full compliance would
mean that roughly half the cars are removed from the streets, which would amount to a
reduction of approximately 142,000 vehicles per hour. The ITT estimate shows a decline
of 77,206 cars, while the LATE estimate reaches 105,000. Notably, the LATE confidence
interval does not allow me to rule out full compliance. The magnitude of the reductions is

similar for larger vehicles such as trucks and buses.

These traffic reductions translate into measurable improvements in congestion, captured
by increases in citywide average speeds. On alert days, average speed rises by approximately
2 km/h, representing a 4% increase over the control mean. While seemingly modest, this
change is comparable in magnitude to the impacts of high-profile programs such as congestion
pricing in New York City (Cook et al., 2025)."

16 Appendix Table A.5, which disaggregates the effects over time, suggests that the policy may have
become more effective in more recent years. In the first third of the sample period, alerts significantly
reduced heavy vehicle counts but had no detectable effect on cars or congestion. For the final third of the
period, significant reductions appear across all vehicle types and in average traffic speed. Additionally, in the
most recent subsample, there is perfect compliance in the first stage, allowing a sharp RDD to be employed.
Given that there are only 15 alerts in total during the analyzed period, these comparisons are limited by
sample size.
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Table 5: Impact of PCAA alerts on hourly vehicle trips

Congestion Cars Trucks Buses Small buses/vans
(average speed) (hourly vehicle trips)
(1) (2) (3) (4) (5)

Panel A. First Stage 0.736 0.733 0.631 0.642 0.655
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95 percent [0.68;0.79] [0.68;0.79] [0.58:0.68] [0.59;0.69] [0.60;0.71]
Panel B. ITT 1.57 -77,206 -6,238 -8,685 -29,032
p-value 0.011 p < 0.001 0.019 0.004 0.003
CI 95 percent 0.36:2.79]  [-113,517:-40,806] [-11,432;-1,044] [-14,575:-2,795]  |-48,208:-9,855]
Control Mean 48.5 284,515 26,399 33,109 114,790
Panel C. LATE 2.14 -105,349 -9,882 -13,517 -44,293
p-value 0.011 p < 0.001 0.018 0.004 0.003
CI 95 percent [0.493;3.79] [-155,703;-54,995]  [-18,052;-1,711] [-22,625;-4,409]  [-73,303;-15,284]
Bandwidth 5.0 5.1 8.2 7.5 6.8
Obs(left|right) 504|360 504|360 816]432 720[408 648|384

Note: All estimates include a vector of covariates X, which incorporates contemporaneous weather variables.
Panels A and B present estimates of Equation (1) derived with a triangular kernel, a local linear polynomial,
and an optimal bandwidth hp;sg. In Panel A, the dependent variable is a dummy variable indicating
whether the alert is active. In Panel B, the control mean corresponds to the left-hand-side prediction of
the nonparametric regression at the threshold. Panel C reports the local average treatment effect (LATE)
calculated as the ratio of the intention-to-treat (ITT) effect to the first-stage estimate. All estimates are
obtained with the rdrobust package by Calonico et al. (2017). The reported coefficients, p-values, and
95% confidence intervals are computed with robust bias correction, following the approach of Calonico et al.
(2019).

An interesting result from Table 5 is that, although the policy restricts car usage, this
is not offset by an increase in public transport supply. Columns (4) and (5) show that
the number of buses and small buses (known as peseros)—which are key modes of public
transport in terms of volume of daily passengers, especially in the periphery—also decrease.
This may reflect the fact that many of these vehicles have remained highly polluting until
very recently (SEMOVI, 2019; Redaccion Obras, 2025).

Table 6 examines the effect of the air quality warnings on public transportation usage.
I find no significant changes in subway, BRT (Metrobus), or public bicycle usage, although
the FRD estimates are negative for these three variables. Even on regular days, the public
transportation system is overcrowded (SEMOVI, 2019) and uncomfortable (INFOCDMX,
2023). Hence, if an expansion in supply does not accompany the driving restrictions, those
who can will choose to use private alternatives (including second cars but also taxis and

rideshare services) instead of contributing to a stronger reduction in private trips.'” The

17 According to a public opinion survey conducted in Mexico City in 2010 with 2,500 participants, most
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lack of increase in the use of these alternative modes of transport might also be linked to the
public health messaging activated as part of the alerts: People are advised to avoid outdoor

activities such as walking, which complements public transport usage.

Table 6: ITT effect on public transportation

Metro Metrobus Ecobike
(1) (2) (3)

Panel A. ITT -16,841.904 -250,273.391 -3,029.042
p-value 0.611 0.168 0.609
CI 95% [-81,772.758 ; 48,088.95] [-605,845.789 ; 105,299.008| [-14,639.424 ; 8,581.34|
Control Mean 368,998 1,033,175 18,225
Bandwidth 16.36 12.43 13.26
Obs(left|right) 852 | 288 51|20 55 | 21

Note: Panel A presents the intention-to-treat (ITT) estimates derived with a triangular kernel, a local linear
polynomial, and an optimal bandwidth hj;sg. The control mean corresponds to the left-hand-side prediction
of the nonparametric regression at the threshold. All estimates are obtained with the rdrobust package by
Calonico et al. (2017). The reported coefficients, p-values, and 95% confidence intervals are computed with
robust bias correction, following the approach of Calonico et al. (2019). All estimates include a vector of
meteorological controls.

6.2.2 Impacts of PCAA alerts on industrial emissions

If reductions in industrial emissions drive the air quality improvements, then the treatment
effects should be larger at monitoring stations located near the industrial establishments
most affected by alert-driven restrictions. To explore this hypothesis, I match the locations
of air quality monitors with nearby industries listed in the city’s 2016 RETC inventory,
which reports annual industrial emissions by pollutant according to OECD PRTR guidelines
(OECD, 2014). Using each establishment’s North American Industry Classification System
(NAICS) industry code, I classify industries as either restricted or unrestricted, depending
on whether their activities are subject to operational limits under the alert guidelines (GDF,
2016). Figure 7 shows the geographical distribution of restricted and unrestricted facilities
within Mexico City and the 18 neighboring municipalities covered by PCAA directives.
Restricted facilities are required to reduce emissions under the PCAA program, whereas
unrestricted facilities can continue operating during alerts. The figure indicates that the
majority of reporting industries in the area are subject to PCAA operational constraints.

Appendix Table A.7 lists the restricted industries and their corresponding subsectors.

respondents described public transportation as uncomfortable (67%) and unsafe (61%). Only 21% considered
it affordable, and just 14% described it as “fast” (El Poder del Consumidor, 2010).
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Although the RETC does not report SO, releases, it does include CO,, which I propose
as a proxy for establishment-specific emissions intensity. This choice is motivated by the
fact that fossil fuel combustion processes that emit SO, invariably generate COs so facilities
with higher CO, releases generally have higher fuel throughput and energy use. Emission
inventories have documented that many stationary sources, including power plants, release
both CO5 and SO, although the exact emission ratios vary by fuel type, combustion tech-
nology, and pollution control measure (Smith et al., 2011; Guevara et al., 2024). Likewise,
cross-sector studies document a robust positive correlation between CO4 emissions, industrial

energy consumption, and total output (Li et al., 2023a).

CO, emission intensity is expressed as the standardized density of estimated emissions
(tons per year), calculated as the sum of emissions from all facilities subject to PCAA
restrictions within a specified radius from a pollution monitor. Variation in monitor-level
estimated emissions intensity can come from two margins: It can increase in the presence
of a larger number of restricted establishments in the vicinity or from higher intensity per
facility. The premise is that monitors located in areas with higher emissions intensity would

experience larger air quality improvements during a PCAA alert.

Figure 7: Location of Monitoring Stations and Industrial Facilities by Restriction
Status

State of Mexico

+ Unrestricted Industries
% Restricted Industries
Pollution monitoring stations

Note: This map displays the location of air quality monitoring stations (orange dots) and industrial facilities
subject to restrictions during environmental alerts in Mexico City and the neighboring municipalities in
the State of Mexico. Facilities included in the 2016 RETC (Registro de Emisiones y Transferencia de
Contaminantes) are classified based on their North American Industry Classification System (NAICS) code
into restricted industries (black x) and unrestricted ones (red +).

As a first step, I assess whether CO5 emissions intensity can serve as a credible proxy
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for SO4 exposure across varying distances from the monitors. Figure 8, Panel A, shows that
for 15 km, 20 km, and 25 km radii, annual average emissions intensity correlates well with
monitor-level SOy concentrations, suggesting that the proposed measure is a valid proxy
for industrial SOy exposure.'® The correlation peaks at the 15 km radius, reaching 77%,
followed by 20 and 25 km with approximately 72%. A smaller buffer (10 km) performs worse,
potentially because particle transport occurs over longer distances and because, under this
radius size, four of the 38 restricted establishments are excluded (n = 34/38), which may

introduce noise.

For each station and radius, I calculate and use the CO5 emission intensity from restricted
plants to estimate the effects separately for low- and high-intensity exposure groups, defined
as the bottom and top terciles of the distribution shown in Panel A. Panel B of Figure &
presents RD estimates of the effect of air quality alerts on hourly average SOy concentrations
at monitoring stations derived with this heterogeneity measure. The results indicate that
monitors exposed to higher industrial emissions experience larger reductions in SO, than
those exposed to lower emissions intensity. This pattern holds across all radii except 10
km, which shows the weakest correlation with SOs concentrations. For 15 km, the point
estimate for sensors exposed to high-intensity emissions is -7.83, more than twice that for
low-intensity areas (-3.78), and the difference is statistically significant (p = 0.02)."” For the
20 km radius, the estimated coefficient for high-intensity areas is -6.76, compared to -3.57 for
low-intensity areas (p = 0.05), and for the 25 km radius, the estimates are -6.39 and -3.68,
respectively (p = 0.08).

These findings are consistent with the industrial restrictions accounting for the geograph-
ical heterogeneity in SO, improvements and corroborate the conclusion that the policy is
highly effective in curbing industrial emissions. Appendix Table A.7 lists all restricted in-
dustries, sorted by aggregate yearly CO, emissions. The table shows that the sectors driving
the results—based on their contribution to annual industrial emissions—are the chemical in-
dustry, electric power generation, cellulose and paper, wood products, and metallurgy, with

the top ten emitting NAICS industries concentrated within these sectors.

18Tn this main exercise, I construct the proxy intensity considering only establishments from restricted
industries, which account for the majority of facilities in the city. Appendix Figure A.5 A shows the results
from the same exercise considering all industries in the Mexico City area.

9We can reject the hypothesis that Byign = -3.78 at standard significance levels (p = 0.02).
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Figure 8: Heterogeneity by treatment intensity

A. Monitor-Level SO, and Nearby Industrial Pollution —
PCAA Sample
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Note: Each scatterplot in Panel A shows the correlation between the average SO2 concentration recorded
at each monitoring station (y-axis) and the intensity of nearby industrial COgy emissions within 10, 15, 20,
and 25 km (z-axis). The value of p denotes the Pearson correlation coefficient. The value of n indicates the
number of monitoring stations with at least one restricted facility located within the corresponding radius. A
linear fit is included to guide interpretation. In Panel B, the plotted coefficients correspond to local average
treatment effects (LATEs) estimated via a fuzzy regression discontinuity design using the ozone threshold
rule, based on Equation (1). Vertical bars show 95% confidence intervals.
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7 Robustness checks

Given that estimating the RDD results requires a choice of bandwidth selection algorithm,
local polynomial degree, and kernel, I next show that the main results are not sensitive to
the choice of these tuning parameters. In particular, I focus on the key result of the PCAA

alerts’ impact on respiratory ED visits.

Figure 9 examines the robustness of the LATE estimates for respiratory-related ED visits
under various specifications. Panel A explores how the LATE estimates vary by bandwidth
selection algorithm, comparing the MSE-optimal, coverage error rate (CER-) optimal, and
other alternatives. Panel B evaluates the sensitivity of the estimates to changes in the
degree of the local polynomial used, with a range from linear (P1) to cubic (P3). Panel
C investigates sensitivity to different kernel types, including triangular, Epanechnikov, and
uniform kernels. Across all the panels, the results remain consistent, with the confidence
intervals of the baseline specification (first estimate in each panel) including the estimates

derived under these different methodological choices.

If pollution records were manipulated to prevent a PCAA alert, the observations closest
to the threshold would be the likeliest to be manipulated. I thus include a donut hole
regression, which tests the sensitivity to the exclusion of the observations within 2 and 4 ppb
of the threshold (1 ppb and 2 ppb radius, respectively). The results are shown in Figure 9,
Panel D. As shown in Figure 4, the alert threshold is quite lax, such that the percentage of
observations falling above it is small. This limitation makes the results from the donut hole
test rather noisy, but the figure shows that the estimates obtained are comparable to the

baseline estimates.
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Figure 9: Robustness of LATE estimates
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Note: All panels show local average treatment effect (LATE) estimates under different specifications. Panel
A shows how the LATE varies with bandwidth selection algorithms, Panel B focuses on changes based on the
degree of the local polynomial, and Panel C examines the effect of different kernel choices. Panel D illustrates
the robustness of the estimates when I run a donut hole fuzzy regression discontinuity with varying radii.
All estimates are calculated with the rdrobust package by Calonico et al. (2017). The figure shows 90%
(dark gray) and 95% (light gray) confidence intervals for the estimated LATE, obtained with robust bias
correction following Calonico et al. (2019). A vector of contemporaneous weather variables is included as a
control in all specifications.

To further validate the FRD design employed, I conduct a falsification exercise focusing on
the health outcomes. I leverage the fact that acute pollution exposure is expected to impact
only a subset of health outcomes, which encompass respiratory and CVD diagnoses (Aguilar-
Gomez and Rivera, 2024). Consistent with this expectation, Table 7 shows no statistically
significant reductions in ED admissions for digestive conditions, which are relatively common

in the dataset, or for cancer diagnoses, which are comparatively rare.
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Table 7: Placebo tests for health outcomes

Digestive Digestive Cancer Cancer
(All) (<5 and >65) (All) (<5 and >65)

(1) (2) (3) (4)

Panel A. First Stage 0.730 0.739 0.730 0.725
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95% [0.68;0.78| [0.69;0.79] [0.68;0.78] [0.67;0.78|
Panel B. ITT -1.485 -0.418 -0.092 -0.051
p-value 0.141 0.122 0.310 0.129
CI 95% [-3.46;0.49] [-0.95;0.11] [-0.27;0.09] [-0.12;0.01]
Control Mean 7.369 1.303 0.157 0.029
Panel C. LATE -2.035 -0.566 -0.127 -0.070
p-value 0.144 0.125 0.314 0.133
CI 95% [-4.77;0.70] [-1.29;0.16] [-0.37;0.12] [-0.16;0.02]
Bandwidth 5.1 5.0 5.1 5.2
Obs(left|right) 504(360 384|336 504|360 504(360

Note: Panels A and B present estimates of Equation (1) derived with a triangular kernel, a local linear
polynomial, and an optimal bandwidth hj;sg. In Panel A, the dependent variable is a dummy variable
indicating whether the alert is active. In Panel B, the control mean corresponds to the left-hand-side
prediction of the nonparametric regression at the threshold. Panel C reports the local average treatment
effect (LATE) calculated as the ratio of the intention-to-treat (ITT) effect to the first-stage estimate. All
estimates are obtained with the rdrobust package by Calonico et al. (2017). The reported coefficients,
p-values, and 95% confidence intervals are computed with robust bias correction, following the approach of
Calonico et al. (2019). All estimates include a vector of meteorological controls.

8 Discussion

Disorganized urban development across the Global South has often led to high proximity
between residential areas and industrial zones. Consequently, many cities in low- and middle-
income countries now routinely experience extreme pollution levels, with severe repercussions
for human health and productivity (Aguilar-Gomez and Rivera, 2024). In many such con-
texts, governments have also historically favored a car-focused development approach that,
in the long run, produced acute traffic congestion and substantial emissions from mobile
sources. In these cities, governments have found themselves faced with a trade-off between
the economic activity that keeps the city moving and the health of their population. In
the long run, cleaner fleets and abatement technology are the solution; in the short run, air

quality warnings and their associated temporary restrictions are part of the policy arsenal
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of many of the world’s largest metropolises.

Mexico City introduced threshold-based alerts in the mid-1990s, well before comparable
programs were launched in Beijing or Delhi, but the system became binding only after a
2016 reform that lowered the ozone trigger to 155 ppb. This long institutional evolution,
coupled with a threshold that became binding only recently, makes the PCAA a policy-
relevant prototype for megacities now confronting similar extremes. This paper provides
robust evidence that the PCAA improves both environmental and health outcomes. An
FRD shows substantial same-day drops in ozone and SO, mostly driven by enforced cuts
at industrial facilities. Respiratory ED visits fall by 41-56%, with larger percentage gains
for children and older adults. Google search analytics reveal heightened interest in the alert
itself but little evidence of queries related to masks or symptoms, implying that behavioral
avoidance is limited. Thus, the data point to mitigation, rather than adaptation, as the

dominant short-term mechanism for the effects.

A second reason this setting offers broad policy lessons lies in the city’s structure: Its
industry and population are tightly co-located, a configuration shared by Jakarta, Delhi, San-
tiago, and major African hubs such as Lagos and Cairo, where stationary sources of emissions
account for a sizable share of SOy and primary PM emissions (Sahu et al., 2023; Lestari et al.,
2020; Barraza et al., 2017; Clean Air Fund, 2025b,a). The PCAA’s cross-jurisdiction gover-
nance through CAMe, which initially covered 18 State of Mexico municipalities in addition

20

to the city’s own subdivisions,”” further illustrates how regional cooperation can internalize

transboundary externalities in large urban agglomerations.

The results also refine the debate on driving restrictions. Temporary bans cut vehi-
cle counts by approximately 25% yet can raise morning NO, and CO under VOC-limited
conditions—an outcome that complements the long-run substitution effects (second-car pur-
chases) documented by Davis (2008) and Gallego et al. (2013). Policymakers weighing
traffic-only measures should therefore consider atmospheric chemistry and potential rebound

channels.

Beyond the findings themselves, the study underscores the value of a rich data ecosystem—
still a work in progress for many cities in the Global South. Mexico City’s dense monitoring
network (SIMAT), plant-level emissions reporting (RETC), anonymized ED microdata, and
over 300 traffic sensors enabled credible causal evaluation. Few African or Asian megacities

currently maintain such integrated datasets; building them will be a step toward advancing

20As of 2025, CAMe coordinates air quality policy across six states and more than 80 municipalities in
the Mexico City metropolitan area.
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evidence-based environmental management.
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Online Appendix

Table A.1: PCAA — Measures

Measures

Recommendations

Reduce the time spent outdoors

Reduce liquefied petroleum gas (LPG) consumption
General Public Report fires and gas leaks to the corresponding authorities

Carpooling and home office are recommended

Mandatory actions or restrictions

Suspend outdoor activities in all schools

No vehicles for publicity purposes

Transport Additional age- and emissions-based driving restrictions are added to
the HNC
Suspend activities that generate fugitive emissions from VOC
Suspend activities in establishments that use wood or coal
Suspend all construction, remodeling, demolition and movement ac-
tivities
Stop operation at gasoline stations that do not have return systems

Industry for petrol fumes
Suspend printing activities using VOCs without emission control sys-
tems
Suspend industrial activities using benzene, toluene, xylene or deriva-
tives without control equipment
Suspend cleaning and degreasing processes with uncontrolled VOC
emissions
Fixed sources in the manufacturing industry with combustion pro-
cesses must reduce emissions by 30-40% from baseline during the
alert
Exempted fixed sources in the manufacturing industry must reduce
NO, emissions by an additional 30% from day 4 of the alert
Thermoelectric plants must reduce operations by 50% during the alert
LPG storage and distribution plants must suspend maintenance, re-
pair and transfer operations
Suspend infrastructure maintenance, including paving
Strengthen the monitoring and combat of fires in agricultural and

Authorities

forest areas

Strengthen the surveillance and fines of vehicles and establishments
who fail to comply with the respective measures

Suspend activities that involve ceramic or brick baking and melting
furnace

Note: The table summarizes the most relevant measures of the Mexico City Environmental Alerts Program
(PCAA). In 2016, prewarnings were eliminated from the program, and all measures listed in Panel 1 of
the table were incorporated into Phase 1. The table is based on information from the official Mezico City
Gazettes, available online. For the purposes of this paper, I focus on post-reform alerts to examine the
impacts of the policy with driving restrictions. Precontingencia and Phase II measures are not included in
the table because they were never activated during the analysis period.


http://data.consejeria.cdmx.gob.mx/index.php/gaceta
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Figure A.1: Timing of restrictions: Example from alert issued on August 7, 2016
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Note: The figure shows the trajectory of ozone (Os) in the 48 hours before and after the Mexico City
Environmental Alerts Program (PCAA) alert issued on August 7, 2016. The line represents the hourly
average of monitor-level readings.

Figure A.2: Histogram of alerts since 2016 by duration
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Note: The figure shows the distribution of alerts by their duration, measured in hours between activation
and deactivation. Source: Atmospheric Monitoring System (SIMAT).



Figure A.3: Traffic data
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Note: The figure displays hourly speed and flow averages. Observations are collected from 343 monitors in
the city. Speed is measured in km/h, and flow in cars is counted per hour. Data are from the Mexico City
Open Data Portal.

Figure A.4: Interest over time
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Note: The figure shows the evolution of weekly search interest in Mexico City for four categories of terms
related to air quality: pollution (e.g., “smog,” “ozone”), symptoms (e.g., “asthma,” “irritated eyes”), prevention
(e.g., “face mask,” “air purifier”), and PCAA (e.g., “environmental contingency,” “Phase 1”). The indicators
are constructed from Google Trends data and standardized on a 0—100 scale, where 100 represents the week
with the highest search interest in the category. Each line represents the weekly average of the search index
across terms within the category.



Table A.2: Search terms used to construct Google Trends indicators by category

Category Search Terms Query List
Original contaminacion + smog + ozono -+ imeca + cal-
Pollution idad del aire + contaminacion ambiental

Translated pollution + smog + ozone + IMECA + air
quality + environmental pollution

Original asma -+ alergia + ojos irritados + problemas
Symptoms respiratorios

Translated asthma + allergy + irritated eyes + respiratory

problems
Original prevencion + exposicion al aire + mascarilla +
Prevention filtro 4 purificador de aire + cubrebocas
Translated prevention + air exposure -+ face mask + filter

-+ air purifier + face covering

Original contingencia ambiental + alerta ambiental +

PCAA fase 1 + fase 2 + semaforo ambiental + pro-
grama PCAA

Translated environmental contingency + environmental

alert 4+ phase 1 + phase 2 4 environmental traf-
fic light + PCAA program

Note: This table lists the search terms used to construct the Google Trends indicators for each thematic
category. Terms were originally selected in Spanish and translated into English for reference. Each indicator
reflects the daily search interest averaged across all terms in the category, based on data for Mexico City
from April 1, 2016 to December 31, 2019.



Table A.3: Descriptive statistics

Obs Mean Std Dev  Min Max
a) Pollution
O (ppb) 32784  30.31 2457  0.84 132.35
SO, (ppd) 32,784 3.98 5.34 0.3 80.74
CO (ppm) 32,784 0.5 031 002 256
NO, (ppb) 32,784 39 97.26 34 234.42
PMy (ug/m?) 32,784 4253 21.25 317  223.75
b) Traffic
Average speed (km/h) 29,109 47.37 7.19 8.13  133.15
Number of cars 29,832 290,286.55 142,567.93 0 891,540
Number of trucks 29,832  21,564.34  24,929.91 0 661,676
Number of buses 29,832  26,515.36  21,847.52 0 244,610
Number of small buses/vans 29,832 114,468.33 71,932.18 0 2,193,264
¢) Hourly ED wvisits
Respiratory (All) 32,783 11.58 9.53 0 116
Respiratory (<5 and >65) 32,783 5.89 5.3 0 71
CVD (All) 32,783 3.14 3.31 0 42
CVD (<5 and >65) 32,783 1.03 1.37 0 20
d) Awareness
Pollution 1,366 25.56 23.88 0 100
Symptoms 1,366 57.91 16.07 0 100
Prevention 1,366 56.88 18.97 12 100
PCAA 1,366 3.25 12.40 0 100

Note: This table presents the main descriptive statistics for different variables. Panel a) shows pollution
statistics, where observations are at the hour level. Panel b) includes traffic data, where observations are
at the hour level. Panel c) reports health outcomes, with observations at the hour level. Panel d) contains
awareness indices constructed from Google Trends data, aggregated at the daily level. These indices capture
relative search interest in four topics: pollution, symptoms, prevention, and PCAA. Each index is normalized
from 0 to 100 and reflects the popularity of grouped search terms over time in Mexico City. The data cover

the period from April 4, 2016, to December 31, 2019.



Table A.4: ITT effect on pollution

Probability of Alert

Activation
(1)
Panel A. First Stage 0.518
p-value p < 0.001
CI 95 percent [0.236;0.799]
Bandwidth 17.79
Obs(left|right) 78 | 25

Note: All estimates include a vector of covariates X, which incorporates current climate variables. Panels A
present estimates of Equation (1) derived with a triangular kernel, a local linear polynomial, and an optimal
bandwidth hj;sp. In Panel A, the dependent variable is a dummy variable indicating whether the alert
is active. All estimates are obtained with the rdrobust package by Calonico et al. (2017). The reported
coefficients, p-values, and 95% confidence intervals are computed with robust bias correction, following the
approach of Calonico et al. (2019).



Table A.5: Temporal heterogeneity in traffic response to PCAA alerts

Congestion Cars Trucks Buses Pesero-vans
Older alerts (average speed) (hourly vehicle trips)
(1) (2) (3) (4) (6)

Panel A. First Stage 0.860 0.818 0.817 0.839 0.815
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95% [0.81;0.91] [0.77;0.86] [0.77;0.86] [0.79;0.89] [0.77;0.86]
Panel B. ITT -.541 -13,298 -13,673 -15,850 -37,301
p-value 0.386 0.466 0.007 0.007 0.056
CI 95% [-1.76;.681] [-49,031;22,436]  [-23,692;-3,653]  [-27,393;-4,307] [-75,606;10,03]
Control Mean 50.4 228555 41873 47484 127068
Panel C. LATE -.643 -16,258 -16,759 -18,894 -45,474
p-value 0.390 0.477 0.009 0.008 0.070
CI 95% [-2.11;.822] [-61016;28501] [-29,381;-4,138]  [-32,900;-48,88| [-94,648;3,701]
Bandwidth 44 5.4 5.3 44 6.4
Obs(left|right) 192|168 240(192 240(192 192(168 288|216

Congestion Cars Trucks Buses Pesero vans

Recent Alerts (average speed) (hourly vehicle trips)
(1) 2) 3) (4) (6)

ITT 13 -197,257 -20,623 -26,966 -102,459
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95% [10.4;15.5] [-298,311;-96,203] [-24,722;-16,523] [-33,376;-20,557| [-139,820;-65,098]|
Control Mean 45.9 32,5607 15,272 20,495 118,565
Bandwidth 4.7 5.4 4.9 5.1 4.1
Obs(left|right) 144]120 216[120 144120 216/120 144|120

Note: All estimates include a vector of covariates X, which incorporates contemporaneous weather variables.
Panels A and B present estimates of Equation (1) derived with a triangular kernel, a local linear polynomial,
and an optimal bandwidth hj;sg. In Panel A, the dependent variable is a dummy variable indicating
whether the alert is active. In Panel B, the control mean corresponds to the left-hand-side prediction of
the nonparametric regression at the threshold. Panel C reports the local average treatment effect (LATE)
calculated as the ratio of the intention-to-treat (ITT) effect to the first-stage estimate. Older alerts include
the first third of the sample and recent alerts the last third. For recent alerts, I employ a sharp regression
discontinuity design because there is perfect compliance in the first stage. All estimates are obtained with
the rdrobust package by Calonico et al. (2017). The reported coefficients, p-values, and 95% confidence
intervals are computed with robust bias correction, following the approach of Calonico et al. (2019).



Table A.6: Impacts of PCAA alerts on information-seeking behavior

Pollution Symptoms Prevention PCAA
(1) (2) (3) (4)

Panel A. First Stage 0.532 0.527 0.508 0.509
p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001
CI 95 percent [0.24;0.82] [0.24;0.82] [0.24;0.77] [0.23;0.79]
Panel B. ITT -0.604 -10.571 8.467 16.140
p-value 0.949 0.113 0.315 0.265
CI 95 percent [-19.219;18.010] [-23.654;2.513] [-8.049;24.984] [-12.239;44.520]
Control Mean 3.735 58.049 45.284 -8.929
Panel C. LATE -1.060 -19.960 16.529 32.067
p-value 0.951 0.161 0.326 0.145
CI 95 percent [-34.844:32.725] [-47.881;7.961] [-16.478;49.536] [-11.105;75.239]
Bandwidth 12.1 12.8 18.2 15.0
Obs(left|right) 51]20 51]20 91]25 64|24

Note: All estimates include a vector of covariates X, which incorporates contemporaneous weather variables.
Panels A and B present estimates of Equation (1) derived with a triangular kernel, a local linear polynomial,
In Panel A, the dependent variable is a dummy variable indicating
whether the alert is active. In Panel B, the control mean corresponds to the left-hand-side prediction of
the nonparametric regression at the threshold. Panel C reports the local average treatment effect (LATE)
calculated as the ratio of the intention-to-treat (ITT) effect to the first-stage estimate. All estimates are
obtained with the rdrobust package by Calonico et al. (2017). The reported coefficients, p-values, and
95% confidence intervals are computed with robust bias correction, following the approach of Calonico et al.

and an optimal bandwidth hj/sg.

(2019).



Figure A.5: Heterogeneity by treatment intensity, all industries
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Note: Each scatterplot in Panel A shows the correlation between the average SO2 concentration recorded
at each monitoring station (y-axis) and the intensity of nearby industrial COgy emissions within 10, 15, 20,
and 25 km (z-axis). The value of p denotes the Pearson correlation coefficient. The value of n indicates
the number of monitoring stations with at least one facility located within the corresponding radius. All
industries are included, regardless of whether they are subject to Mexico City Environmental Alerts Program
(PCAA) restrictions. A linear fit is included to guide interpretation. In Panel B, the plotted coefficients
correspond to local average treatment effects (LATEs) estimated via a fuzzy regression discontinuity design
using the ozone threshold rule, based on Equation (1). Vertical bars show 95% confidence intervals.



Table A.7: Restricted Industries

NAICS Code Industry Sector Number of Aggregate COy
plants emissions
325999 Manufacture of other chemicals Chemistry 6 771,908
221110 Electric power generation, transmission, and distribution Electric Power Generation 11 582,946
322299 Manufacture of other paperboard and paper products Cellulose and paper 4 302,819
322121 Papermaking in integrated plants Cellulose and paper 2 107,278
339999 Other manufacturing industries Wood & products 11 83,992
332720 Manufacture of screws, nuts, rivets and the like Metallurgical (includes steel) 2 67,221
331520 Casting of nonferrous metal parts Metallurgical (includes steel) 2 46,889
325610 Manufacture of soaps, cleaners and toothpastes Chemistry 6 45,363
221120 Electric power transmission and distribution Electric power generation 1 44,871
325412 Manufacture of pharmaceutical preparations Chemistry 21 41,815
311422 Fruit & veg. preservation (nonfreezing/dehydration) Food & bev. (human use) 1 39,630
322132 Manufacture of cardboard and cardboard from pulp Cellulose and paper 2 36,523
311222 Manufacture of edible vegetable oils and fats Chemistry 1 31,522
314999 Flag & Misc. Textile Mfg. (n.e.c.) Textiles, fibers and yarns 1 21,555
325411 Manufacture of raw materials for the pharmaceutical industry ~ Chemistry 3 17,702
311110 Animal feed processing Other 1 15,677
325180 Manufacture of other inorganic basic chemicals Chemistry 4 15,641
331420 Secondary copper rolling Metallurgical (includes steel) 1 15,288
336330 Auto steering & suspension parts mfg. Automotive 1 15,087
323119 Continuous shape printing and other prints Other 2 9,633
326211 Manufacture of rims and tubes Automotive 3 8,863
336120 Truck and tractor trailer manufacturing Automotive 1 7,836
322210 Carton packaging manufacturing Cellulose and paper 3 7174
327999 Manufacture of products from nonmetallic minerals Metallurgical (includes steel) 2 6,668
311999 Processing of other foods Food & bev. (human use) 1 5,676
325211 Manufacture of synthetic resins Chemistry 7 5,182
332110 Manufacture of forged and die-cut metal products Metal articles & products 1 4,510
325520 Adhesive manufacturing Chemistry 3 4,488
336390 Manufacture of other parts for automotive vehicles Automotive 2 4,365
326290 Manufacture of other rubber products Chemistry 5 3,879
325130 Manufacture of synthetic pigments and dyes Chemistry 1 3,502
332610 Manufacture of wire, wire products and springs Metal articles & products 1 3,019
326150 Manufacture of urethane foams and products Chemistry 1 2,543
541990 Other professional, scientific and technical services Chemistry 1 2,138
325310 Fertilizer manufacturing Chemistry 1 2119
326220 Manufacture of rubber and plastic belts and hoses Chemistry 1 1,989
551111 Corporate automotive 1 1,628
325190 Manufacture of other organic basic chemicals Chemistry 1 1,401
325510 Paint and coatings manufacturing Paints and inks 3 1,238
332999 Manufacture of other metal products Elec., electr. & HH equip. 2 991
339112 Manufacture of disposable material for medical use Chemistry 1 853
325212 Manufacture of synthetic rubbers Chemistry 1 828
325910 Printing ink manufacturing Paints and inks 1 721
326110 Manufacture of flexible plastic bags and films Plastic articles & products 1 697
332510 Hardware and lock manufacturing Metal articles & products 1 640
336340 Manufacture of brake system parts for automotive vehicles Automotive 1 630
325620 Manufacture of cosmetics, perfumes, etc. Chemistry 2 559
336370 Manufacture of die-cut metal parts for automotive vehicles Automotive 1 548
323120 Printing-related industries Other 1 392
327910 Manufacture of abrasive products Metallurgical (includes steel) 1 344
331220 Manufacture of other iron and steel products Metallurgical (includes steel) 2 311
324191 Manufacture of lubricating oils and greases Chemistry 1 292
521110 Central banking Other 1 236
331510 Casting molding of iron and steel parts Metallurgical (includes steel) 1 232
333412 Refrigeration equipment manufacturing Metallurgical (includes steel) 1 223
313310 Textile product finishing Textiles, fibers and yarns 1 222
335311 Manufacture of electric motors and generators Elec., electr. & HH equip. 1 168
325320 Manufacture of pesticides and agrochemicals, except fertilizers Chemistry 1 158
331310 Basic aluminum industry Metallurgical (includes steel) 1 114
331419 Smelting and refining of other nonferrous metals Metallurgical (includes steel) 1 101

Note: This list includes the manufacturing subsectors subject to activity restrictions according to the official
regulation published in the Mezico City Gazettes, Vol. 19, No. 4, dated February 5, 2016. These restrictions
are part of the Mexico City Environmental Alerts Program (PCAA), implemented by the ministry of the
environment to control emissions during air pollution contingencies.

10



	Introduction
	Background
	The PCAA: Measures and implementation

	Data
	Pollution and weather data
	PCAA documentation
	Urban flows
	Health outcomes
	Awareness
	Descriptive statistics

	Empirical strategy
	RV manipulation

	Results
	Impacts of PCAA alerts on air pollution
	Impacts of air quality warnings on health

	Mechanisms
	Adaptation
	Mitigation
	Impacts of PCAA alerts on mobility patterns
	Impacts of PCAA alerts on industrial emissions


	Robustness checks
	Discussion

